Evolution of Complex Density-Dependent Dispersal Strategies

Kalle Parvinen, Anne Seppänen and John Nagy

University of Turku, Finland
Department of Mathematics
anmheik@utu.fi

Applied Mathematics
seminar 2.3.2012
Not examples of evolution

butterfly metamorphosis

cell differentiation: osteoclast
[Boyle et al, Nature 2003]

human development
The theory of evolution by natural selection assumes:

- individuals differ by their trait, different survival probability
- traits are heritable
- too many offspring, not all can survive
- struggle for existence
- Individuals that survive and reproduce before dying are on average, better suited to their local environment

Therefore...

- As time passes by the distribution of traits change.
- More fitted become more general: Adaptation
Some questions:

- Why nature is green?
- Why multicellular organism evolved?
- Why helping behavior evolved?
- Why we have two genders?
- Why senescence?
- Why dispersing evolved?
- Can we prevent evolution of drug resistance?
- Can we control cancer?

And so many more!
American pika - *Ochotona princeps*

- order: Lagomorpha
- small, diurnal herbivore
- native to cold climates
American pika - *Ochotona princeps*

talus - rocky slopes

hay pile for winter
Bodie metapopulation

ore dumps - patches
Dispersal is selected for, because of...

- Resource competition
- Fluctuating environment
- Kin competition

Density dependent dispersal

- Large patches: threshold strategy
  [Gyllenberg and Metz:2001]
- Larger patch models “dilute” the kin benefits

Our question:

- How density-dependent dispersal evolves in metapopulation with small local populations?
Strategy types

Examples of density dependent dispersal strategies

a) threshold for large patch-sizes

b) threshold

c) monotone

d) non-monotone
Emigration:
- Natal dispersal: probability that an individual born in a patch with $n$ inhabitants will emigrate immediately after birth
- Adult dispersal: rate to emigrate from a patch with $n$ inhabitants
  
- $e = (e_1, e_2, ..., e_K)$
- Natal dispersal: $0 \leq e_i \leq 1$
- Adult dispersal: $e_i \geq 0$

Immigration:
- Probability to stay in a patch when encountered
- $m = (m_0, m_1, ..., m_{K-1})$
- $0 \leq m_i \leq 1$
Local model

a) Adult dispersal, local dynamics

\[
\begin{array}{cccccccc}
0 & 1 & 2 & \cdots & k & \cdots & K \\
\text{Immigration} & \text{Birth or immigration} \\
\text{Death or emigration} & \text{Death or emigration} \\
\text{Local extinction} & & & & & & \\
\end{array}
\]

b) Natal dispersal, local dynamics

\[
\begin{array}{cccccccc}
0 & 1 & 2 & \cdots & k & \cdots & K \\
\text{Immigration} & \text{Immigration or birth without emigration} \\
\text{Death} & \text{Death} & \text{Death} & \text{Death} & \text{Death} & \text{Death} & \text{Death} \\
\text{Local extinction} & & & & & & \\
\end{array}
\]
Metapopulation model

- Infinite number of patches
- Patches connected via global dispersal

Forward Kolmogorov equations for natal dispersal

\[
\begin{align*}
\frac{d}{dt} p_0 &= -\alpha m_0 D p_0 + d_1 p_1 + \mu (1 - p_0), \\
\frac{d}{dt} p_n &= [\alpha m_{n-1} D + (n - 1) b_{n-1} (1 - e_{n-1})] p_{n-1} \\
&\quad - [n (b_n (1 - e_n) + d_n) + \alpha m_n D + \mu] p_n \\
&\quad + (n + 1) d_{n+1} p_{n+1}, \\
\frac{d}{dt} p_K &= [\alpha m_{K-1} D + (K - 1) b_{K-1} (1 - e_{K-1})] p_{K-1} \\
&\quad - [K d_K + \mu] p_K \\
\frac{d}{dt} D &= -\alpha D \sum_{n=0}^{K-1} p_n m_n \\
&\quad + \sum_{n=1}^{K} n b_n e_n p_n + K b_K (1 - e_K) (1 - \eta) \sigma p_K - \nu D.
\end{align*}
\]
Assumptions

Assume

- Separation of time scales:
  - fast ecological dynamics
  - slow evolutionary dynamics
- The resident is in its population dynamical attractor
- A mutant appears
  - rare
  - slightly different phenotype

What happens? Can the mutant invade?
Evolution of dispersal
Evolution of dispersal
Evolution of dispersal
Evolution

Kalle Parvinen, Anne Seppänen and John Nagy

Evolution of dispersal
Evolution of dispersal
Fitness

Invasion fitness $r$

- Exponential growth when rare.
- If $r > 0$ then invasion is possible.
- [Metz et al., 1992, 1996; Geritz et al., 1997, 1998]

$R_{\text{metapop}}$ - metapopulation reproduction ratio

- Operates on dispersal generations
- $\ln R_{\text{metapop}}$ and $r$ sign equivalent
Singular strategies

- Fitness gradient equals to 0.
- Attracting vs. repelling
- Unbeatable vs. beatable
Examples of density dependent dispersal strategies

a) threshold for large patch-sizes

![Graph showing a threshold for large patch-sizes]

b) threshold

![Graph showing a threshold]

c) monotone

![Graph showing a monotone pattern]

d) non-monotone

![Graph showing a non-monotone pattern]
Density-dependence vs. density-independence

\[ K = 10, \ k = 7 \]

Natal dispersal vs. Adult dispersal

Kalle Parvinen, Anne Seppänen and John Nagy
Evolution of dispersal
A Trait Substitution Sequence

\[ K = 10, \; k = 7, \; \nu = 0.08, \; \mu = 0.06 \]

\[ t = 0 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 1 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 2 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 3 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 4 \]

Kalle Parvinen, Anne Seppänen and John Nagy

Evolution of dispersal
A Trait Substitution Sequence

\[ K = 10, \, k = 7, \, \nu = 0.08, \, \mu = 0.06 \]

\[ t = 5 \]
A Trait Substitution Sequence

$$K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06$$

$$t = 6$$

pop.size

emigration
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 7 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 8 \]

pop.size

Kalle Parvinen, Anne Seppänen and John Nagy

Evolution of dispersal
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 9 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 10 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 20 \]

Kalle Parvinen, Anne Seppänen and John Nagy

Evolution of dispersal
A Trait Substitution Sequence

\[ K = 10, \, k = 7, \, \nu = 0.08, \, \mu = 0.06 \]

\[ t = 30 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 40 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 50 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 100 \]
$$K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06$$

$$t = 150$$
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 160 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 170 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 180 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 190 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 200 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 210 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 220 \]
A Trait Substitution Sequence

\[ K = 10, \, k = 7, \, \nu = 0.08, \, \mu = 0.06 \]

\[ t = 230 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 240 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 245 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 250 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 255 \]
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 258 \]

Kalle Parvinen, Anne Seppänen and John Nagy

Evolution of dispersal
A Trait Substitution Sequence

\[ K = 10, \ k = 7, \ \nu = 0.08, \ \mu = 0.06 \]

\[ t = 260 \]
Attracting vertices of the strategy space

a) $K = 10$
emigration only

b) $K = 8$
emigration only

c) $K = 8$ emigration and immigration

Expected threshold

$\tilde{n} = k \left(1 - \frac{\mu}{b}\right) < k$
Phase plane plot

a) $\mu = 0.048$

\begin{align*}
e_1 &= e_2 = e_3 = e_4 = 0 \\
e_7 &= e_8 = e_9 = e_{10} = 1
\end{align*}
Emigration and immigration are not always complements 
\( m_i \neq 1 - e_i \)

- Immigrant does not know his neighbors
- Newborn knows his mother is there

\[ K = 10, k = 7, \mu = 0.1 \]

\[ K = 10, k = 7, \mu = 0.07 \]
Adult dispersal

- Non-monotone density dependence?

a) \( t \in [0, 10], \mu = 0.25 \)

b) \( t \in [10, 80], \mu = 0.25 \)

c) \( t \in [80, 750], \mu = 0.25 \)

d) \( t \in [750, 10000], \mu = 0.25 \)
Nature is full of exciting questions.

Intuition is not always right.

Complex density dependent dispersal may evolve.

Adult dispersers may benefit more from conditional dispersal strategies.

Hypothesis: bang-bang type dispersal at Bodie.
Thank you!