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Introduction

Probability vs Possibility

D. V. Lindley : ’The only satisfactory description of uncertainty is
probability . . . anything that can be done with fuzzy logic, belief functions,
upper and lower probabilities, or any other alternative to probability, can
be better done with probability’.

Cheesman: ’The numerous schemes for representing and reasoning
about uncertainty that have appeared in the AI literature are
unnecessary, probability is all that is needed’.
L. Zadeh: ’Probability theory should be based on fuzzy logic’.
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Introduction

Science and complexity

An article by Warren Weaver from 1948.

In this paper Weaver identified a ’region’ of problems ’which science has
as yet [1947/1948] little explored or conquered’. These problems, he
wrote, can neither be reduced to a simple formula nor can they be solved
with methods of probability theory.
Weaver’s midcentury expectations on the progress in science and
technology seem to be anticipating important topics in the field of Soft
Computing (SC) and Computational Intelligence: vague, fuzzy or
approximate reasoning, the meaning of concepts.
In this article at the end of the 1940’s Weaver mentioned may be for the
first time at all a trichotomy of scientific problems.
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Introduction

Science and complexity

’Problems of simplicity’ that ’physical science before 1900 was largely
concerned with’.

A problem of disorganized complexity ’is a problem in which the number
of variables is very large, and one in which each of the many variables
has a behavior which is individually erratic, or perhaps totally unknown.
However, in spite of this helter-skelter, or unknown, behavior of all the
individual variables, the system as a whole possesses certain orderly and
analyzable average properties’.
’The whole question of evidence and the way in which knowledge can be
inferred from evidence are now recognized to depend on these same
statistical ideas, so that probability notions are essential to any theory of
knowledge itself.’
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Introduction

A new class of problems

In addition to, and in-between, the problems of simplicity and the
problems of disorganized complexity he identified another kind of
scientific problems: One is tempted to oversimplify, and say that scientific
methodology went from one extreme to the other, from two variables to
an astronomical number, and left untouched a great middle region.

The importance of this middle region, moreover, does not depend
primarily on the fact that the number of variables involved is moderate.
The really important characteristic problems of this middle region, which
science has as yet little explored or conquered, lies in the fact that these
problems, as contrasted with the disorganized situations which statistics
can cope, show the essential feature of organization.
In fact, one can refer to this group of problems as those of organized
complexity.
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Introduction

A new class of problems

Although these problems are complex, they are not problems to which
statistical methods hold the key but they are problems which involve
dealing simultaneously with a sizable number of factors which are
interrelated into an organic whole.

With regard to these problems Weaver stressed that the involved
variables are all interrelated in a complicated, but nevertheless not in
helter-skelter, fashion that these complex systems have parts in close
interrelations, and that something more is needed than the mathematics
of averages.
These problems in the biological, medical, psychological, economic, and
political sciences are just too complicated to yield to the old
nineteenth-century techniques . . . and these new problems, moreover,
cannot be handled with the statistical techniques so effective in
describing average behaviour in problems of disorganized complexity.
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Introduction

Probability vs Possibility

Definition (Normalized monotone measure)

Let X be a non-empty set and C any σ-algebra of its subsets, then a set
function m : C → [0, 1] is a normalized monotone measure if it satisfies

1 m(∅) = 0,m(X) = 1
2 A ⊆ B ⇒ m(A) ≤ m(B)∀A,B ∈ C

Definition (Probability measure)

A probability measure, Pr, is an additive normalized monotone measure, i.e.

Pr(A ∪ B) = Pr(A) + Pr(B)

for any disjoint subsets A and B of the event space.

Note that probability is sufficient to describe the likelihood of an event thanks
to the autoduality property, i.e. Pr(A) = 1− Pr(Ā).
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Introduction

Probability vs Possibility

Definition (Possibility)

A (normalized) possibility measure, Pos, is an maxitive normalized monotone
measure, i.e.

Pos(
⋃
i∈I

Ai) = sup
i

Pos(Ai)

for any family Ai|Ai ∈ P (X), i ∈ I, where I is an arbitrary index set.

But it is not autodual; thus we need another function

Definition (Necessity measure)

A necessity function, Nec, is defined as follows

Nec(
⋂
i∈I

Ai) = inf
i

Nec(Ai)

for any family Ai|Ai ∈ P (X), i ∈ I, where I is an arbitrary index set.

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 9 / 94



Introduction

A problem

Example (Dubois and Prade)

. . . a professional gambler will distribute his stakes evenly if he knows that all
the options on which he is betting have equal strength. In the absence of any
information, the neophyte will do the same, because it is the most popular
strategy. Subjective probabilities allow no distinction between these two states
of knowledge and seems ill adapted to situations where the knowledge is
sparse.

We have to make distinction between two types of uncertainty
1 Uncertainty due to variability of observations.
2 Uncertainty due to incomplete information.
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Introduction Probability theory

Basic notations

In probability theory, the dependency between two random variables can
be characterized by their joint probability density function.

If X and Y are random variables with probability density functions fX(x)
and fY (y), respectively, then the density function, fX,Y (x, y), of their joint
random variable (X,Y ), should satisfy the following properties∫

R
fX,Y (x, t)dt = fX(x),

∫
R
fX,Y (t, y)dt = fY (y)

Furthermore, fX(x) and fY (y) are called the the marginal probability
density functions of random variable (X,Y ).

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 11 / 94



Introduction Probability theory

Basic notations

In probability theory, the dependency between two random variables can
be characterized by their joint probability density function.
If X and Y are random variables with probability density functions fX(x)
and fY (y), respectively, then the density function, fX,Y (x, y), of their joint
random variable (X,Y ), should satisfy the following properties∫

R
fX,Y (x, t)dt = fX(x),

∫
R
fX,Y (t, y)dt = fY (y)

Furthermore, fX(x) and fY (y) are called the the marginal probability
density functions of random variable (X,Y ).

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 11 / 94



Introduction Probability theory

Basic notations

In probability theory, the dependency between two random variables can
be characterized by their joint probability density function.
If X and Y are random variables with probability density functions fX(x)
and fY (y), respectively, then the density function, fX,Y (x, y), of their joint
random variable (X,Y ), should satisfy the following properties∫

R
fX,Y (x, t)dt = fX(x),

∫
R
fX,Y (t, y)dt = fY (y)

Furthermore, fX(x) and fY (y) are called the the marginal probability
density functions of random variable (X,Y ).

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 11 / 94



Introduction Probability theory

Characteristics

The expected (or mean) value of random variable X is defined as

M(X) =
∫

R
xfX(x)dx,

and if g is a function of X then the expected value of g(X) can be
computed as

M(g(X)) =
∫

R
g(x)fX(x)dx.

The covariance between two random variables X and Y is defined as

cov(X,Y ) = M((X −M(X))(Y −M(Y ))) = M(XY )−M(X)M(Y )

The variance of random variable X is defined by cov(X,X)

var(X) = cov(X,X) = M((X −M(X))2) = M(X2)−M(X)2.
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Introduction Probability theory

Characteristics

The correlation coefficient between X and Y is defined by

cor(X,Y ) =
cov(X,Y )√

var(X)var(Y )
.

If we have auniform distribution U on the interval [a, b], then the mean
value is equal to

M(U) =
a+ b

2
,

and the variance is

M(U) =
(b− a)2

12
,
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Fuzzy sets and fuzzy numbers

Origin

Fuzzy sets were introduced by Zadeh in 1965 as a means of representing
and manipulating data that was not precise, but rather fuzzy.

In classical set theory, a subset A of a set X can be defined by its
characteristic function χA as a mapping from the elements of X to the
elements of the set {0, 1}.
The statement ′x is in A′ is true if the second element of the ordered pair
is 1, and the statement is false if it is 0.
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Fuzzy sets and fuzzy numbers

Origin

Similarly, a fuzzy subset A of a set X can be defined as a set of ordered
pairs, each with the first element from X, and the second element from
the interval [0, 1], with exactly one ordered pair present for each element
of X.

This defines a mapping, µA, between elements of the set X and values in
the interval [0, 1]. The value zero is used to represent complete
non-membership, the value one is used to represent complete
membership, and values in between are used to represent intermediate
degrees of membership.
It should be noted that the terms membership function and fuzzy subset
get used interchangeably. (A(x) := µA(x))
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Fuzzy sets and fuzzy numbers

Basic definitions

A γ-level set of a fuzzy set A in Rm is defined by
[A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and [A]γ = cl{x ∈ Rm : A(x) > γ}
(the closure of the support of A) if γ = 0.

We will use a subclass of fuzzy sets:

Definition
A fuzzy number is a convex fuzzy set on the real line with bounded support R
such that

1 ∃x0 ∈ R, µA(x0) = 1

2 µA is piecewise continuous

(The convexity means that all the γ-level sets are convex.) Furthermore, we
call F the family of all fuzzy numbers.

[A]γ is a closed convex subset of R for all γ ∈ [0, 1]. We use the notations

a1(γ) = min[A]γ , a2(γ) = max[A]γ

for the left-hand side and right-hand side of the γ−cut, respectively.
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[A]γ = {x ∈ Rm : A(x) ≥ γ} if γ > 0 and [A]γ = cl{x ∈ Rm : A(x) > γ}
(the closure of the support of A) if γ = 0.
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such that
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Fuzzy sets and fuzzy numbers

Basic definitions

Fuzzy numbers can be considered as possibility distributions: if A ∈ F is
a fuzzy number and x ∈ R a real number then A(x) can be interpreted as
the degree of possiblity of the statement ′x is A′. The possibility that A
takes its value from [a, b] is defined by

Pos(A ∈ [a, b]) = max
x∈[a,b]

A(x).

A fuzzy set C in R2 is said to be a joint possibility distribution of fuzzy
numbers A,B ∈ F , if it satisfies the relationships

max{y ∈ R | C(x, y)} = A(x) and max{x ∈ R | C(x, y)} = B(y),

for all x, y ∈ R.
A and B are called the marginal possibility distributions of C. Marginal
possibility distributions are always uniquely defined from their joint
possibility distribution.
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Fuzzy sets and fuzzy numbers

Joint distribution

Let C be a joint possibility distribution with marginal possibility
distributions A,B ∈, and let [A]γ = [a1(γ), a2(γ)] and [B]γ = [b1(γ), b2(γ)],
γ ∈ [0, 1].

Then A and B are said to be non-interactive if their joint possibility
distribution is A×B,

C(x, y) = min{A(x), B(y)},

for all x, y ∈ R, which can be written in the form, [C]γ = [A]γ × [B]γ , that
is, [C]γ is rectangular subset of R2, for any γ ∈ [0, 1].
If A and B are are non-interactive then for any x ∈ [A]γ and any y ∈ [B]γ

we have that the ordered pair (x, y) will be in [C]γ for any γ ∈ [0, 1].
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Fuzzy sets and fuzzy numbers

Joint distribution

Another extreme situation is when [C]γ is a line segment in R2.

If one takes a point, x, from the γ-level set of A then one can take only
y = x from the γ-level set of B for the pair (x, y) to belong to [C]γ .
This point-to-point interactivity relation is the strongest one that we can
envisage between γ-level sets of marginal possibility distributions.
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Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Idea

In possibility theory we can use the principle of average value of
appropriately chosen real-valued functions to define mean value,
variance, covariance and correlation of possibility distributions.

A function f : [0, 1]→ R is said to be a weighting function if f is
non-negative, monotone increasing and satisfies the following
normalization condition

∫ 1

0
f(γ)dγ = 1.

Different weighting functions can give different (case-dependent)
importances to level-sets of possibility distributions.
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Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Possibilistic mean

The f -weighted possibilistic mean value of a possibility distribution A ∈ F
is the f -weighted average of probabilistic mean values of the respective
uniform distributions on the level sets of A.

The f -weighted possibilistic mean value of A ∈ F , with
[A]γ = [a1(γ), a2(γ)], γ ∈ [0, 1], is defined by

Ef (A) =
∫ 1

0

M(Uγ)f(γ)dγ =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ, (1)

where Uγ is a uniform probability distribution on [A]γ for all γ ∈ [0, 1].
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Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Possibilistic variance

The measure of f -weighted possibilistic variance ofA is the f -weighted
average of the probabilistic variances of the respective uniform
distributions on the level sets of A.

The f -weighted possibilistic variance of A ∈ F , with [A]γ = [a1(γ), a2(γ)],
γ ∈ [0, 1], is defined by

Varf (A) =
∫ 1

0

var(Uγ)f(γ)dγ =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

where Uγ is a uniform probability distribution on [A]γ for all γ ∈ [0, 1].
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Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Possibilistic variance
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Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Possibilistic covariance

The f -weighted possibilistic covariance between marginal possibility
distributions of a joint possibility distribution is defined as the f -weighted
average of probabilistic covariances between marginal probability
distributions whose joint probability distribution is uniform on each
level-set of the joint possibility distribution.

That is, the f -weighted possibilistic covariance between A,B ∈ F , (with
respect to their joint distribution C), can be written as

Covf (A,B) =
∫ 1

0

cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic
covariance.

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 23 / 94



Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Possibilistic covariance

The f -weighted possibilistic covariance between marginal possibility
distributions of a joint possibility distribution is defined as the f -weighted
average of probabilistic covariances between marginal probability
distributions whose joint probability distribution is uniform on each
level-set of the joint possibility distribution.
That is, the f -weighted possibilistic covariance between A,B ∈ F , (with
respect to their joint distribution C), can be written as

Covf (A,B) =
∫ 1

0

cov(Xγ , Yγ)f(γ)dγ,

where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1], and cov(Xγ , Yγ) denotes their probabilistic
covariance.

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 23 / 94



Fuzzy sets and fuzzy numbers Characteristic measures of fuzzy numbers

Possibilistic correlation

A measure of possibilistic correlation between marginal possibility
distributions A and B of a joint possibility distribution C has been defined
as their possibilistic covariance divided by the square root of the product
of their possibilistic variances.

That is, the f -weighted measure of possibilistic correlation of A,B ∈ F ,
(with respect to their joint distribution C), is defined as,

ρold
f (A,B) =

Covf (A,B)√
Varf (A)

√
Varf (B)

=

∫ 1

0
cov(Xγ , Yγ)f(γ)dγ( ∫ 1

0
var(Uγ)f(γ)dγ

)1/2( ∫ 1

0
var(Vγ)f(γ)dγ

)1/2

(2)

where Vγ is a uniform probability distribution on [B]γ .
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Possibilistic correlation

Possibilistic correlation

The main drawback of the definition of the former index of interactivity (2)
is that it does not necessarily take its values from [−1, 1] if some
level-sets of the joint possibility distribution are not convex.

After some computations we get ρoldf (A,B) ≈ 1.562 for any weighting
function f . We get here a value bigger than one since the variance of the
first marginal distributions, Xγ , exceeds the variance of the uniform
distribution on the same support.
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Possibilistic correlation

Example with non-convex level set

Figure: Example with non-convex level set
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Possibilistic correlation

Possibilistic correlation

We introduce a new index of interactivity between marginal distributions
A and B of a joint possibility distribution C as the f -weighted average of
the probabilistic correlation coefficients between the marginal probability
distributions of a uniform probability distribution on [C]γ for all γ ∈ [0, 1].

Definition
The f -weighted index of interactivity of A,B ∈ F (with respect to their joint
distribution C) is defined by

ρf (A,B) =
∫ 1

0

ρ(Xγ , Yγ)f(γ)dγ (3)

where

ρ(Xγ , Yγ) =
cov(Xγ , Yγ)√

var(Xγ)
√

var(Yγ)

and, where Xγ and Yγ are random variables whose joint distribution is uniform
on [C]γ for all γ ∈ [0, 1].
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Possibilistic correlation

Possibilistic correlation

It is clear that for any joint possibility distribution this new correlation
coefficient always takes its value from interval [−1, 1], since
ρ(Xγ , Yγ) ∈ [−1, 1] for any γ ∈ [0, 1] and

∫ 1

0
f(γ)dγ = 1.

Since ρf (A,B) measures an average index of interactivity between the
level sets of A and B, we will call this measure as the f -weighted
possibilistic correlation coefficient.
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Possibilistic correlation Examples

Example 1.

Consider the case, when A(x) = B(x) = (1− x) · χ[0,1](x), for x ∈ R, that
is [A]γ = [B]γ = [0, 1− γ], for γ ∈ [0, 1].

Suppose that their joint possibility distribution is given by
F (x, y) = (1− x− y) · χT (x, y), where

T =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1
}
.

A γ-level set of F is computed by

[F ]γ =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1− γ
}
.
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Possibilistic correlation Examples

Example 1.

Figure: Illustration of joint possibility distribution F .
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Possibilistic correlation Examples

Example 1.

The f -weighted possibilistic correlation of A and B:

ρf (A,B) =
∫ 1

0

−1
2
f(γ)dγ = −1

2
.

We note here that using the former definition (2) we would obtain
ρold
f (A,B) = −1/3 for the correlation coefficient.
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Possibilistic correlation Examples

Non-interactive fuzzy numbers

If A and B are non-interactive then their joint possibility distribution is
defined by C = A×B.

Since all [C]γ are rectangular and the probability distribution on [C]γ is
defined to be uniform we get cov(Xγ , Yγ) = 0, for all γ ∈ [0, 1].
So Covf (A,B) = 0 and ρf (A,B) = 0 for any weighting function f .
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Possibilistic correlation Examples

Perfect correlation

Fuzzy numbers A and B are said to be in perfect correlation, if there exist
q, r ∈ R, q 6= 0 such that their joint possibility distribution is defined by

C(x1, x2) = A(x1) · χ{qx1+r=x2}(x1, x2) = B(x2) · χ{qx1+r=x2}(x1, x2),
(4)

where χ{qx1+r=x2}, stands for the characteristic function of the line

{(x1, x2) ∈ R2|qx1 + r = x2}.

In this case we have

[C]γ =
{

(x, qx+ r) ∈ R2
∣∣x = (1− t)a1(γ) + ta2(γ), t ∈ [0, 1]

}
where [A]γ = [a1(γ), a2(γ)]; and [B]γ = q[A]γ + r, for any γ ∈ [0, 1], and,
finally,

B(x) = A

(
x− r
q

)
,

for all x ∈ R.
Furthermore, A and B are in a perfect positive (negative) correlation if q
is positive (negative) in (4).
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Possibilistic correlation Examples

Perfect correlation

Figure: Perfect negative correlation.
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Possibilistic correlation Examples

Perfect correlation

Figure: Perfect positive correlation.
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Possibilistic correlation Examples

Mere shadows

Consider the case, when the joint possibility distribution is nothing else
but the marginal distributions themselves.

C(x, y) =

 A(x) if y = 0
B(y) if x = 0
0 otherwise

A(x) = B(x) = (1− x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, 1− γ], for γ ∈ [0, 1]. Suppose that their
joint possibility distribution is given by ’pure shares’ (the marginal
distributions themselves),

C(x, y) = (1− x− y) · χT (x, y),

where

T =
{

(x, 0) ∈ R2 | 0 ≤ x ≤ 1
}⋃{

(0, y) ∈ R2 | 0 ≤ y ≤ 1
}
.
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Possibilistic correlation Examples

Mere shadows

The f -weighted possibilistic correlation:

ρf (A,B) =
∫ 1

0

−3
5
f(γ)dγ = −3

5
.

Theorem
If A and B are fuzzy numbers and their joint possibility distribution has the
following form:

C(x, y) =

 A(x) if y = 0
B(y) if x = 0
0 otherwise,

then
| ρf (A,B) |≤ 3

5
.
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Correlation ratio Probabilistic correlation ratio

Correlation ratio

The correlation ratio was originally introduced by Pearson as part of
analysis of variance and it was extended to random variables by
Kolmogorov.

In recent years the correlation ratio is recognized as a key notion in global
sensitivity analysis. (McKay)

Example

Suppose we have two probability distributions, X and Y , with two-dimensional
standard normal joint distribution, and the correlation coefficient of X and Y is
r. Then the relationship between X and Y 2 is clearly not linear, their
correlation coefficient is 0. But if r is close to 1, the relationship between X
and Y 2 is still very strong. And in this case the correlation ratio takes the
value r2.
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Correlation ratio Probabilistic correlation ratio

Original definition

Definition
The correlation ratio of the probability distribution X with respect to the
probability distribution Y is defined as

η2(X|Y ) =
D2[E(X|Y )]
D2(X)

,

D2[E(X|Y )] = E(E(X|Y )− E(X))2

E(X|Y = y) =
∫ ∞
−∞

xf(x|y)dx

f(x|y) =
f(x, y)
f(y)
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Correlation ratio Probabilistic correlation ratio

Basic properties I.

The correlation ratio measures the functional dependence between X
and Y . It takes on values between 0 (no functional dependence) and 1
(purely deterministic dependence).

If X and Y are independent, then the correlation ratio is 0, but
η2(X|Y ) = 0 is not a sufficient condition.
The correlation ratio is asymmetrical by nature since the two random
variables fundamentally do not play the same role in the functional
relationship; in general, η2(X|Y ) 6= η2(Y |X).
We obtain a symmetrical definition if we use

η2(X,Y ) = max
{
η2(X|Y ), η2(Y |X)

}
The correlation ratio is invariant to multiplicative changes in the first
argument:

η2(kX|Y ) = η2(X|Y )
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Correlation ratio Probabilistic correlation ratio

Basic properties II.

If E(X|Y = y) is linear function of y (i.e. there is a linear relationship
between random variables E(X|Y ) and Y ) this will give the same result
as the square of the correlation coefficient (ρ(X,Y )), otherwise the
correlation ratio will be larger in magnitude:

Theorem

η2(X|Y ) = sup
f
ρ2(X, f(Y )),

where we take the supremum for all the functions f , such that f(Y ) has finite
variance. The correlation can reach its maximum if f(y) = aE(X|Y = y) + b.

The difference between η2(X|Y ) and ρ2(X,Y ) can be interpreted as the
degree of non-linearity between X and Y

η2(X|Y )−ρ2(X,Y ) =
1

D2(X)

{
min
a,b

E(Y − (aX + b))2 −min
f
E(Y − f(X))2

}
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Correlation ratio Correlation ratio for fuzzy numbers

Correlation ratio

Definition
Let us denote A and B the marginal possibility distributions of a given joint
possibility distribution C. Then the f -weighted possibilistic correlation ratio of
marginal possibility distribution A with respect to marginal possibility
distribution B is defined by

η2
f (A|B) =

∫ 1

0

η2(Xγ |Yγ)f(γ)dγ (5)

where Xγ and Yγ are random variables whose joint distribution is uniform on
[C]γ for all γ ∈ [0, 1], and η2(Xγ |Yγ) denotes their probabilistic correlation ratio.
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Correlation ratio Correlation ratio for fuzzy numbers

Properties

From the definition, it is clear, that the correlation ratio takes on values
between 0 and 1.

The correlation ratio is asymmetrical since the marginal distributions
fundamentally do not play the same role in the functional relationship; in
general, η2(A|B) 6= η2(B|A).
We obtain a symmetrical definition if we use

η2(A,B) = max
{
η2(A|B), η2(B|A)

}
If E(Xγ |Yγ = y) is linear function of y (i.e. there is a linear relationship
between random variables E(Xγ |Yγ) and Yγ) for every γ ∈ [0, 1] this will
give the same result as the square of the correlation coefficient (ρ(A,B)),
otherwise the correlation ratio will be larger in magnitude.
If A and B are symmetrical fuzzy numbers, then

η2(A|B) = η2(B|A) = 0.
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Correlation ratio Computation of Correlation Ratio: Some Examples

Linear Relationship

Consider the case, when

A(x) = B(x) = (1− x) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0, 1− γ], for γ ∈ [0, 1]. Suppose that their joint
possibility distribution is given by C(x, y) = (1− x− y) · χT (x, y), where

T =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1
}
.

Then we have [C]γ =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x+ y ≤ 1− γ
}

.
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Correlation ratio Computation of Correlation Ratio: Some Examples

Linear Relationship

Figure: Illustration of joint possibility distribution C.

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 45 / 94



Correlation ratio Computation of Correlation Ratio: Some Examples

Linear Relationship

D2[E(Xγ |Yγ)] = E(E(Xγ |y)− E(Xγ))2

=
∫ 1−γ

0

(
1− γ − y

2
− 1− γ

3
)2

2(1− γ − y)
(1− γ)2

dy

=
(1− γ)2

72
.

Using that

D2(Xγ) =
(1− γ)2

18
,

we obtain that the probabilistic correlation ratio of Xγ on Yγ is

η2(Xγ |Yγ) =
1
4
.

From this the f -weighted possibilistic correlation ratio of A with respect to
B is,

η2
f (A|B) =

∫ 1

0

1
4
f(γ)dγ =

1
4
.
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Correlation ratio Computation of Correlation Ratio: Some Examples

Linear Relationship

It is easy to calculate that [ρf (A,B)]2 =
1
2

.

In this simple case

η2
f (A|B) = η2

f (B|A) = [ρf (A,B)]2,

since E(Xγ |Yγ = y) is a linear function of y.

E(Xγ |Yγ = y) =
1− γ − y

2

=
1− γ

3
− 1

2

(
y − 1− γ

3

)
= E(Xγ)− ρf (Xγ , Yγ)(y − E(Yγ)).
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Correlation ratio Computation of Correlation Ratio: Some Examples

A Ball-Shaped Joint Distribution

A(x) = B(x) = (1− x2) · χ[0,1](x),

for x ∈ R, that is [A]γ = [B]γ = [0,
√

1− γ], for γ ∈ [0, 1].

The joint possibility distribution is ball-shaped, that is,

C(x, y) = (1− x2 − y2) · χT (x, y),

where
T =

{
(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1

}
.

A γ-level set of C is computed by

[C]γ =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y2 ≤ 1− γ
}
.

The f -weighted possibilistic correlation ratio of B with respect A is

η2
f (B|A) =

∫ 1

0

27π2 − 256
36π2 − 256

f(γ)dγ =
27π2 − 256
36π2 − 256

.
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Correlation ratio Computation of Correlation Ratio: Some Examples

Different marginals 1.

The marginal distributions are

A(x) = (1− x2) · χ[0,1](x),

B(x) = (1− y) · χ[0,1](y)
for x ∈ R, that is [A]γ = [0,

√
1− γ], [B]γ = [0, 1− γ], for γ ∈ [0, 1].

The joint possibility distribution is given by:

C(x, y) = (1− x2 − y) · χT (x, y),

where T =
{

(x, y) ∈ R2 | x ≥ 0, y ≥ 0, x2 + y ≤ 1
}
.

The f -weighted possibilistic correlation ratio of B with respect to A is

η2
f (B|A) =

∫ 1

0

1
6
f(γ)dγ =

1
6
.

The f -weighted possibilistic correlation ratio of B with respect to A is

η2
f (A|B) =

∫ 1

0

3
19
f(γ)dγ =

3
19
6= η2

f (B|A).
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Different marginals 2.

The marginal distributions are
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√
x+ y ≤ 1
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0

1
3
f(γ)dγ =

1
3
.
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37
f(γ)dγ =

12
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Correlation ratio Computation of Correlation Ratio: Some Examples

Future research

We will examine the relationship/difference between η2
f (A|B) and

ρf (A,B) in different cases (C has convex γ-cuts)

Use it in applications for sensitivity analysis: if A is a set of fuzzy numbers
A1, . . . , An, then η2

f (G(A)|Ai) represents the fraction of the variance of
G(A) which is "explained" by Ai .
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Quasi Fuzzy Numbers

Definition

Definition
A quasi fuzzy number A is a fuzzy set of the real line with a normal, fuzzy
convex and continuous membership function satisfying the limit conditions [?]

lim
t→∞

µA(t) = 0, lim
t→−∞

µA(t) = 0.

Furthermore, we call Q the family of all quasi fuzzy numbers.

A quasi triangular fuzzy number is a quasi fuzzy number with a unique
maximizing point.If A is a quasi fuzzy number, then [A]γ is a closed
convex (compact) subset of R for any γ > 0.
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Quasi Fuzzy Numbers

Example

-5 -4 -3 -2 -1 0 1 2 3 4 5

0.25

0.5

0.75

1

Figure: A quasi triangular fuzzy number with membership function e−|x|.
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Quasi Fuzzy Numbers

Possibilistic mean

We can extend the definition of possibilistic mean to quasy fuzzy numbers

Definition
The f -weighted possibilistic mean value of A ∈ Q is defined as

Ef (A) =
∫ 1

0

E(Uγ)f(γ)dγ =
∫ 1

0

a1(γ) + a2(γ)
2

f(γ)dγ,

where Uγ is a uniform probability distribution on [A]γ for all γ > 0.

The possibilistic mean value is originally defined for fuzzy numbers (i.e.
quasi fuzzy numbers with bounded support). If the support of a quasi
fuzzy number A is unbounded then its possibilistic mean value might
even not exist.
However, for a symmetric quasi fuzzy number A we get Ef (A) = a,
where a is the center of symmetry, for any weighting function f .
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Quasi Fuzzy Numbers

Possibilistic mean

We want to characterize the family of quasi fuzzy numbers for which it is
possible to calculate the possibilistic mean value.

First we show an example to show that this calculation is not always
possible:

Example

Consider the following quasi fuzzy number

µA(x) =


0 if x ≤ 0
1√
x+ 1

if 0 ≤ x

In this case a1(γ) = 0, a2(γ) =
1
γ2
− 1, and its possibilistic mean value can

not be computed, since the following integral does not exist (not finite),

E(A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0

(
1
γ2
− 1
)
γdγ =

∫ 1

0

(
1
γ
− γ
)

dγ.
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possible:

Example

Consider the following quasi fuzzy number

µA(x) =


0 if x ≤ 0
1√
x+ 1

if 0 ≤ x

In this case a1(γ) = 0, a2(γ) =
1
γ2
− 1, and its possibilistic mean value can

not be computed, since the following integral does not exist (not finite),

E(A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0

(
1
γ2
− 1
)
γdγ =

∫ 1

0

(
1
γ
− γ
)

dγ.
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Quasi Fuzzy Numbers

Possibilistic mean

The main result

Theorem

If A is a non-symmetric quasi fuzzy number then Ef (A) is finite (where the
weighting function is f(γ) = 2γ) if and only if there exist real numbers ε, δ > 0
, such that,

µA(x) = O
(
x−

1
2−ε
)
,

if x→ +∞ and
µA(x) = O

(
(−x)−

1
2−δ
)
,

if x→ −∞.

If we consider other weighting functions, we need to require that

µA(x) = O(x−1−ε), when x→ +∞ (in the worst case, when f(γ) = 1,
1
γ

is the critical growth rate.)
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Quasi Fuzzy Numbers

Example

Example

Consider the following quasi triangular fuzzy number,

µA(x) =

 0 if x ≤ 0
1

x+ 1
if 1 ≤ x

In this case we have,

a1(γ) = 0, a2(γ) =
1
γ
− 1,

and its possibilistic mean value is,

E(A) =
∫ 1

0

a1(γ) + a2(γ)
2

2γdγ =
∫ 1

0

(
1
γ
− 1
)
γdγ =

∫ 1

0

(1− γ)dγ = 1/2.
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Quasi Fuzzy Numbers

Example

This example is very important since the volume of A can not be
normalized since

∫∞
0
µA(x)dx does not exist. In other words, µA can not

be considered as a density function of any random variable.
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0.25

0.5

0.75

1

Figure: Quasi triangular fuzzy number 1/(x+ 1), x ≥ 0.
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Quasi Fuzzy Numbers

Possibilistic variance

Definition
The measure of f -weighted possibilistic variance of a quasi fuzzy number A is
the f -weighted average of the probabilistic variances of the respective uniform
distributions on the level sets of A. That is, the f -weighted possibilistic
variance of A is defined as the covariance of A with itself

Varf (A) =
∫ 1

0

var(Uγ)f(γ)dγ =
∫ 1

0

(a2(γ)− a1(γ))2

12
f(γ)dγ.

where Uγ is a uniform probability distribution on [A]γ for all γ > 0. The value of
Varf (A) does not depend on the boundedness of the support of A. If
f(γ) = 2γ then we simple write Var(A).
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Quasi Fuzzy Numbers

Possibilistic variance

From the definition it follows that in this case we can not make any
distinction between the symmetric and non-symmetric case.

Theorem

If A is a quasi fuzzy number then Var(A) is finite if and only if there exist real
numbers ε, δ > 0, such

µA(x) = O(x−1−ε)

if x→ +∞ and
µA(x) = O((−x)−1−δ),

if x→ −∞.

If we consider other weighting functions, we need to require that

µA(x) = O(x−2−ε),

when x→ +∞ (in the worst case, when f(γ) = 1,
1
√
γ

is the critical

growth rate.)
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Quasi Fuzzy Numbers

Probabilistic fuzzy numbers

Theorem

If A is a probabilistic (quasi) fuzzy number (it means that A(x) is the
membership function of a fuzzy number and also the density function of a
probability distribution) with center a then

| Ef (A)− a |≤|M(A)− a |

-0.4 0 0.4 0.8 1.2 1.6 2 2.4 2.8 3.2 3.6 4

0.25

0.5

0.75

1

Figure: Quasi triangular fuzzy number and density function of an exponential random
variable with parameter one: e−x, x ≥ 0.
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Real option valuation with fuzzy numbers Real options

Real option

A real option is the right-but not the obligation-to undertake some
business decision, typically the option to make, or abandon a capital
investment. There are two types of options - call options and put options.

A call option gives the buyer of the option the right to buy the underlying
asset at a fixed price (strike price) at the expiration date or at any time
prior to the expiration date (European or American options).
A put option gives the buyer of the option the right to sell the underlying
asset at a fixed price at the expiration date or at any time prior to the
expiration date (European or American options).
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Real option valuation with fuzzy numbers Real options

Real option analysis

Forces decision makers to be explicit about the assumptions underlying
their projections, and is increasingly employed as a tool in business
strategy formulation.

Contrasted with more standard techniques of capital budgeting (such as
NPV), where only the most likely or representative outcomes are
modelled.
Uncertainty inherent in investment projects is usually accounted for by
risk-adjusting probabilities.
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Real option valuation with fuzzy numbers Real options

Net present value

The total present value of a time series of cash flows. It is a standard method
for using the time value of money to appraise long-term projects. Each cash
inflow/outflow is discounted back to its present value, then they are summed.

NPV =
T∑
t=0

Ct
(1 + i)t

,

where:
t - the time of the cash flow
i - the discount rate
Ct - the net cash flow at time t
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Real option valuation with fuzzy numbers Real options

Determinants of the option value

Current value of the underlying asset.

Variance in value of the underlying asset.
Strike price of the option.
Time to expiration on the option.
Riskless interest rate corresponding to the life of the option.
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Real option valuation with fuzzy numbers Real options

Option Pricing Models

The Binomial Model:simple discrete-time model for the asset price
process, in which the asset, in any time period, can move to one of two
possible prices.

Monte Carlo option model:simulating the various sources of uncertainty
affecting the value, and then determining their average value over the
range of outcomes.
Partial differential equation
The Black-Scholes Model:limiting case of the binomial.
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Real option valuation with fuzzy numbers Real options

The formula

Value of the call=SN(d1)−Ke−rtN(d2),
where:

d1 =
ln(

S

K
) + (r +

σ2

2
)t

σ
√
t

,

d2 = d1 − σ
√
t
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Real option valuation with fuzzy numbers Real options

Motivations

The lack of simple methods for real option valuation

Most of the methods are complex and demand a good understanding of
the underlying mathematics
It makes their use difficult in practice
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Real option valuation with fuzzy numbers Real options

Motivations

The methods are based on the assumption that they can accurately
mimic the underlying markets as a process

This may hold for some efficiently traded financial securities, but may not
hold for real investments that do not have existing markets
Practical use of real options can only be reached through usable and
understandable methods that use the types of inputs that companies are
already collecting and generating
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Real option valuation with fuzzy numbers Real options

Definition
A fuzzy set A is called triangular fuzzy number with peak (or center) a, left
width α > 0 and right width β > 0 if its membership function has the following
form

A(t) =


1−

a− t
α

if a− α ≤ t ≤ a

1−
t− a
β

if a ≤ t ≤ a+ β

0 otherwise

and we use the notation A = (a, α, β). It can easily be verified that

[A]γ = [a− (1− γ)α, a+ (1− γ)β], ∀γ ∈ [0, 1].

The support of A is (a− α, b+ β).
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Real option valuation with fuzzy numbers Real options

Figure: A triangular fuzzy number A, defined by three points {a, α, β}.
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Real option valuation with fuzzy numbers Real options

Definition

A fuzzy set A is called trapezoidal fuzzy number with tolerance interval [a, b],
left width α and right width β if its membership function has the following form

A(t) =



1−
a− t
α

if a− α ≤ t ≤ a

1 if a ≤ t ≤ b

1−
t− b
β

if a ≤ t ≤ b+ β

0 otherwise

and we use the notation
A = (a, b, α, β). (6)
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Real option valuation with fuzzy numbers Real options

Why we use fuzzy numbers

To estimate future cash flows and discount rates we usually employ
educated guesses, based on expected values or other statistical
techniques, which is consistent with the use of fuzzy numbers.

When we replace non-fuzzy numbers (crisp, single) that are commonly
used in financial models, with fuzzy numbers, we can construct models
that include the inaccuracy of human perception.
These models are more in line with reality, as they do not simplify
uncertain distribution-like observations to a single point estimate that
conveys the sensation of no-uncertainty.
The most used fuzzy numbers are trapezoidal and triangular fuzzy
numbers, because they make many operations possible and are
intuitively understandable and interpretable.
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Real option valuation with fuzzy numbers The method

The Datar-Mathews method uses a simulation to generate a probability
distribution of project outcomes from project cash-flow scenarios given by the
responsible project managers - then the probability weighted mean value of
the positive outcomes is calculated and multiplied by the probability of the
positive outcomes (%) over all of the outcomes (100%). The answer is real
option value. The Datar-Mathews method is shown to correspond to the
answer from the Black-Scholes model when the same constraints are used.
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Real option valuation with fuzzy numbers The method

The method is based on simulation generated probability distributions for the
NPV of future project outcomes. The project outcome probability distributions
are used to generate a pay-off distribution, where the negative outcomes
(subject to terminating the project) are truncated into one chunk that will
cause a zero pay-off, and where the probability weighted average value of the
resulting pay-off distribution is the real option value. The DMM shows that the
real-option value can be understood as the probability-weighted average of
the pay-off distribution.
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Real option valuation with fuzzy numbers The method

Fuzzy Pay-Off Method

Fuzzy Pay-Off Method for Real Option Valuation is a new method for valuing
real options, created in 2008. It is based on the use of fuzzy logic and fuzzy
numbers for the creation of the pay-off distribution of a possible project (real
option). The structure of the method is similar to the probability theory based
Datar-Mathews method.
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Real option valuation with fuzzy numbers The method

The main observations

The main observations of the fuzzy pay-off model are the following:
The fuzzy NPV of a project is (equal to) the pay-off distribution of a
project value that is calculated with fuzzy numbers

The mean value of the positive values of the fuzzy NPV is the possibilistic
mean value of the positive fuzzy NPV values.
Real option value calculated from the fuzzy NPV is the possibilistic mean
value of the positive fuzzy NPV values multiplied with the positive area of
the fuzzy NPV over the total area of the fuzzy NPV.
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Real option valuation with fuzzy numbers The method

In other words, the real option value can be derived (without any simulation
whatsoever) from the fuzzy NPV. These are the blocks that together make the
fuzzy pay-off method for real option valuation.

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 78 / 94



Real option valuation with fuzzy numbers The method

Definition
We calculate the real option value from the fuzzy NPV as follows

ROV =

∫∞
0
A(x)dx∫∞

−∞A(x)dx
× E(A+) (7)

where A stands for the fuzzy NPV, E(A+) denotes the fuzzy mean value of
the positive side of the NPV, and

∫∞
−∞A(x)dx computes the area below the

whole fuzzy number A, and
∫∞
0
A(x)dx computes the area below the positive

part of A.
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Real option valuation with fuzzy numbers
Calculating the ROV with the Fuzzy Pay-Off Method with a Selection of Different

Types of Fuzzy Numbers

The triangular case

The membership function of the right-hand side of a triangular fuzzy number
truncated at point a− α+ z, where 0 ≤ z ≤ α:

(A|z)(t) =

{
0 if t ≤ a− α+ z

A(t) otherwise
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Types of Fuzzy Numbers

case application of the new method in an industry setting, and close with a discussion and 

conclusions. 

 

2. New Fuzzy Pay-Off Method for Valuation of Real Options from Fuzzy Numbers 

 

In two recent articles (Mathews et al., 2007b) and (Mathews et al., 2007a) present a practical 

probability theory based method for the calculation of real option value (ROV) and show that the 

method and results from the method are mathematically equivalent to the Black-Sholes formula 

(Black et al., 1973). The method is based on simulation generated probability distributions for 

the NPV of future project outcomes. The method implies that: “the real-option value can be 

understood simply as the average net profit appropriately discounted to Year 0, the date of the 

initial R&D investment decision, contingent on terminating the project if a loss is forecast at the 

future launch decision date.” The project outcome probability distributions are used to generate a 

payoff distribution, where the negative outcomes (subject to terminating the project) are 

truncated into one chunk that will cause a zero payoff, and where the probability weighted 

average value of the resulting payoff distribution is the real option value. 

 

We use fuzzy numbers in representing the expected future distribution of possible project costs 

and revenues, and hence also the profitability (NPV) outcomes. When using fuzzy numbers the 

fuzzy NPV itself is the payoff distribution from the project.  

 

The method presented in (Mathews et al., 2007a) implies that the weighted average of the 

positive outcomes of the payoff distribution is the real option value; in the case with fuzzy 

numbers the weighted average is the fuzzy mean value of the positive NPV outcomes (which is 

nothing more than the possibility weighted average). Derivation of the fuzzy mean value is 

presented in (Carlsson & Fullér, 2001). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1. Triangular fuzzy number (a possibility distribution), defined by three points [a, !, "] 

describing the NPV of a prospective project; (20% and 80% are for illustration purposes only). 
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Figure: A triangular fuzzy number A, defined by three points {a, α, β} describing the
NPV of a prospective project; (percentages 20% and 80% are for illustration purposes
only).
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Types of Fuzzy Numbers

The triangular case

E(A|z) = I1 + I2 =
∫ z1

0

γ(a− α+ z + a+ (1− γ)β)dγ+∫ 1

z1

γ(a− (1− γ)α+ a+ (1− γ)β)dγ
(8)

where
z1 = 1− α− z

α
=
z

α
.
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Types of Fuzzy Numbers

The triangular case

E(A|z) =
z3

6α2
+ a+

β − α
6

.

If z = α− a then A|z becomes A+, the positive side of A, and therefore, we
get

E(A+) =
(α− a)3

6α2
+ a+

β − α
6

.
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Types of Fuzzy Numbers

The triangular case

The membership function of the right-hand side of a triangular fuzzy number
truncated at point a− α+ z, where α ≤ z ≤ α+ β:

E(A+) =
(β − z + α)2

6β2
(6a− 5α+ 5z + β).
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Types of Fuzzy Numbers

The triangular case

To compute the real option value with the above formulas we must calculate
the ratio between the positive area of the triangular fuzzy number and the total
area of the same number and multiply this by E(A+), the fuzzy mean value of
the positive part of the fuzzy number A, according to the formula (7).
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Types of Fuzzy Numbers

The trapezoidal case

For computing the real option value from an NPV (pay-off) distribution of a
trapezoidal form we must consider a trapezoidal fuzzy pay-off distribution A
defined by

A(u) =



u

α
− a1 − α

α
if a1 − α ≤ u ≤ a1

1 if a1 ≤ u ≤ a2

u

−β
+
a2 + β

β
if a2 ≤ u ≤ a2 + β

0 otherwise
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Types of Fuzzy Numbers

The trapezoidal case

The γ-level of A is defined by [A]γ = [γα+ a1 − α,−γβ + a2 + β] and its
expected value is caculated by

E(A) =
a1 + a2

2
+
β − α

6
.
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Types of Fuzzy Numbers

The trapezoidal case

Then we have the following five cases, considering the position of 0 in the
fuzzy NPV:

Case 1: z < a1 − α. In this case we have E(A|z) = E(A).

József Mezei ( IAMSR, Åbo Akademi University, Turku , Turku Centre for Computer Science, Turku )Characteristic measures of fuzzy numbers Applied Mathematics Seminar 88 / 94



Real option valuation with fuzzy numbers
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The trapezoidal case

Case 2: a1 − α < z < a1. Then introducing the notation,

γz =
z

α
− a1 − α

α

we find

[A]γ =
{

(z,−γβ + a2 + β) if γ ≤ γz
(γα+ a1 − α,−γβ + a2 + β) if γz ≤ γ ≤ 1

and,

E(A|z) =
∫ γz

0

γ(z − γβ + a2 + β)dγ +
∫ 1

γz

γ(γα+ a1 − α− γβ + a2 + β)dγ

=
a1 + a2

2
+
β − α

6
+ (z − a1 + α)

γ2
z

2
− αγ

3
z

3
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Types of Fuzzy Numbers

The trapezoidal case

Case 3: a1 < z < a2. In this case γz = 1 and

[A]γ = [z,−γβ + a2 + β]

and we get,

E(A|z) =
∫ 1

0

γ(z − γβ + a2 + β)dγ =
z + a2

2
+
β

6
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The trapezoidal case

Case 4: a2 < z < a2 + β. In this case we have

γz =
z

−β
+ c

a2 + β

β

and,
[A]γ = [z,−γβ + a2 + β],

if γ < γz and we find,

E(A|z) =
∫ γz

0

γ(z − γβ + a2 + β)dγ = (z + a2 + β)
γ2
z

2
− β γ

3
z

3
.

Case 5: a2 + β < z. Then it is easy to see that E(A|z) = 0
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Conclusions

Advantages of the method

Advantages:
The simplicity of the presented method over more complex methods.

Using triangular and trapezoidal fuzzy numbers make very easy
implementations possible with the most commonly used spreadsheet
software; this opens avenues for real option valuation to find its way to
more practitioners.
The method is flexible as it can be used when the fuzzy NPV is generated
from scenarios or as fuzzy numbers from the beginning of the analysis.
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Conclusions

Advantages of the method

As information changes, and uncertainty is reduced, this should be reflected
in the fuzzy NPV, the more there is uncertainty the wider the distribution
should be, and when uncertainty is reduced the width of the distribution
should decrease. Only under full certainty should the distribution be
represented by a single number, as the method uses fuzzy NPV there is a
possibility to have the size of the distribution decrease with a lesser degree of
uncertainty, this is an advantage over probability based methods.
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Conclusions

Thank you for your attention!
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