On comparison of different approaches to the stability radius calculation

Olga Karelkina

University of Turku 2011
Outline

- Preliminaries
- Problem statement
- Exact method for calculation stability radius proposed by Chakravarti and Wagelmans
- NSGA-II adaptation for calculation stability radius
- Illustration and comparison of two approaches
Two major directions of investigation can be single out

- quantitative
 - bounds for feasible changes in initial data, which preserve some pre-assigned properties of optimal solutions
 - deriving algorithms for the bounds calculation

- qualitative
 - conditions under which the set of optimal solutions of the problem possesses a certain pre-assigned property of invariance to external influence on initial data of the problem
Shortest path problem (SP)

Given a directed graph \(G = (V, E) \), \(|V| = m\) and \(|E| = n\)

\(c_i\) – a nonnegative cost associated with each edge
\(e_i \in E\)

Problem: find a directed path from a source node \(s\)
to a distinguished terminal node \(t\), with the minimum
total cost.

The feasible set is the set of all sequences
\(P = (e_{i_1}, K, e_{i_k})\),
these sequences are directed paths from \(s\) to \(t\) in \(G\).

Cost mapping

\[
c(P) = \sum_{i=1}^{k} c_i
\]
SP as LP

Vector of ordered edges costs

\[C = (c_1, c_2, K, c_n) \in \mathbb{R}_+^n, \quad x = (x_1, x_2, K, x_n) \in \mathbb{E}^n \]

\[x_i = \begin{cases} 1, & \text{if } e_i \in P, \\ 0 & \text{otherwise} \end{cases} \]

\[\sum_{e_i \in E} c_i x_i \rightarrow \text{min} \]

\[\sum_{e:e_i \rightarrow j} x_i - \sum_{e:e_i \leftarrow j} x_i = \begin{cases} 1, & \text{if } j = s, \\ -1, & \text{if } j = t, \\ 0 & \text{otherwise} \end{cases} \]
Perturbation of the problem

We define norms l_1 and l_∞ in \mathbb{R}^d for any finite dimension $d \in \mathbb{N}$

$$
\|y\|_1 = \sum_{i \in N_d} |y_i|, \quad \|y\|_\infty = \max \{|y_i| : i \in N_d\},
$$

$$y = (y_1, y_2, K, y_d)^T \in \mathbb{R}^d, \; N_d = 1, 2, K, d.
$$

The perturbation of the problem parameters is modeled by adding to the cost vector C perturbing vector $C' = (c'_1, c'_2, K, c'_n) \in \mathbb{R}^n, \; \|C'\|_\infty < \varepsilon, \; \varepsilon > 0.$

The set of the perturbing vectors is denoted by $\Omega(\varepsilon)$.

Stability radius

Let \(X \subset 2^E \) be the set of feasible solutions to the shortest path problem.

Let \(X_{opt}(C) \) be the set of optimal solutions to the shortest path problem with cost vector \(C \).

An optimal solution \(x \in X_{opt}(C) \) is called stable if

\[
\exists \varepsilon > 0 \quad \forall C' \in \Omega(\varepsilon) \quad x \in X_{opt}(C + C').
\]

Stability radius of an optimal solution \(x \in X_{opt}(C) \)

\[
\rho(x, C) = \begin{cases}
\sup \Theta, & \text{if } \Theta \neq \emptyset, \\
0, & \text{if } \Theta = \emptyset.
\end{cases}
\]

\(\Theta = \left\{ \varepsilon > 0 \mid \forall C' \in \Omega(\varepsilon) \quad \left(x \in X_{opt}(C + C') \right) \right\}. \)
Stability radius

\[\rho(x, C) = \min_{x' \in X \setminus \{x\}} \frac{\sum c_i(x'_i - x_i)}{\|x' - x\|_1} \]

(1)

The largest \(\rho \) such that for \(|c'_i| \leq \rho, i \in N_n \)

\[\sum_{i \in N_n} (c_i + c'_i) x_i \leq \sum_{i \in N_n} (c_i + c'_i) x'_i, \quad \forall x' \in X \]
Calculating the stability radii of an optimal solution to the linear problem of 0-1 programming

$$C x \rightarrow \min_{x \in X}$$ \hspace{1cm} (2)

Theorem Let x be an optimal solution to (2). The stability radius of x is the maximum number ρ satisfying the following inequality:

$$\min_{x' \in X \setminus \{x\}} \left\{ \sum_{i \in N_n} (c_i - \rho d_i) x'_i \right\} \geq \sum_{i \in N_n} (-c_i + \rho) x_i \hspace{1cm} (3)$$

$$d_i = \begin{cases} 1, & \text{if } x_i = 0, \\ -1, & \text{if } x_i = 1. \end{cases}$$
\(\rho(x, C) \) is the maximal \(\rho \) satisfying the inequality:

\[
\rho \leq \min_{x' \in X \setminus \{x\}} \frac{\sum_{i \in N_n} C_i (x'_i - x_i)}{\|x' - x\|_1}
\]

From here taking into account

\[
|x'_i - x_i| = x + d_i x'_i, \quad \forall i \in N_n
\]

\[
\|x' - x\|_1 = \sum_{i \in N_n} |x'_i - x_i| = \sum_{i \in N_n} (x + d_i x'_i)
\]

we get

\[
\min_{x' \in X \setminus \{x\}} \left\{ \sum_{i \in N_n} \left(c_i - \rho d_i \right) x'_i \right\} \geq \sum_{i \in N_n} (-c_i + \rho) x_i
\]
Let us denote

\[v(\rho) = \min_{x' \in X \setminus \{x\}} \left\{ \sum_{i \in N_n} (c_i - \rho d_i) x'_i \right\} \]

\[v(\rho) \] is a continuous, piecewise linear and concave function of \(\rho \)

Lemma The number of linear pieces of \(v(\rho) \) is \(O(n^2) \)
Chakravarti and Wagelmans polynomial algorithm

Construction of \(v(\rho) \) on \([0, \|C\|_\infty]\)

- Compute \(v(0) \) and \(v(\|C\|_\infty) \)
- The optimal solutions associated with these values each defines a linear function on \([0, \|C\|_\infty]\)
- If these functions are identical, then \(v(\rho) \) is simply this linear function
- Otherwise, we have two linear functions which intersect at a unique value \(\bar{\rho} \in [0, \|C\|_\infty] \)
- If \((\bar{\rho}, v(\bar{\rho})) \) coincides with the intersection point, then \(v(\rho) \) is the concave lower envelope of the two linear functions
- Otherwise, the optimal solution associated with \(\bar{\rho} \) defines a third linear function which intersects each of the other linear functions on \([0, \|C\|_\infty]\)
A fast and elitist multi-objective genetic algorithm: NSGA-II

Modules

A. A fast non-dominated sorting approach
B. Diversity presentation
 • Density estimation
 • Crowded comparison operator
C. The main loop
Begin

Initialize Population

gen = 0

Evaluation

Assign Fitness

Cond?

Reproduction

Mutation

Crossover

Stop

Yes

No

gen = gen + 1

Slide 14 of 24
Implementation of NSGA-II into calculation stability radius

\[\sum_{i \in N_n} c_i(x'_i - x_i) = f_1(x, C) \rightarrow \min \]

\[\|x' - x\|_1 = f_2(x, C) \rightarrow \max \]

Pareto set

\[P^2(C) = \{ x \in X | \forall x' \in X \] \]

\[((f_1(x, C) \leq f_1(x', C) \land f_2(x, C) \geq f_2(x', C)) \land\]

\[\land (f_1(x, C) \neq f_1(x', C) \lor f_2(x, C) \neq f_2(x', C))) \]
Representation

- Graph is represented by costs matrix (vector)
- Every variable (feasible solution) is coded in a fixed length binary string

Initialization

- Breadth First Search

Evaluation

- A fast non-dominated sorting approach

\[P' = \text{find-nondominated-front}(P) \]
\[P' = \{1\} \]
for each \(p \in P \land p \notin P' \)
\[P' = P' \cup \{ p \} \]
for each \(q \in P' \land q \neq p \)
if \(p \) dominates \(q \), then \(P' = P' \setminus \{ q \} \)
else if \(p \) dominates another member of \(P' \), delete it

(include first member in \(P' \))
(take one solution at a time)
(include \(p \) in \(P' \) temporarily)
(compare \(p \) with other members of \(P' \))
(if \(p \) dominates another member of \(P' \), delete it)

do not include \(P' \) in
Assign fitness

- Density estimation

 Crowding distance $d_{distance}$ is an estimate of the size of the largest cuboid enclosing the point i without including any other point in the population.

- Crowded comparison operator

 \[
 i \preceq_p j \iff (r_{rank_i} < r_{rank_j}) \lor ((r_{rank_i} = r_{rank_j}) \land (d_{distance_i} > d_{distance_j}))
 \]
Reproduction

- The tournament selection scheme

 The strings with minimum front number and minimum ratios

\[
\frac{f_1(x, C)}{f_2(x, C)}
\]

are selected to the mating pool.
Crossovers

- One-Node crossover

Chromosomes before crossover

Chromosomes after crossover
- One-Edge crossover

Chromosomes before crossover

Chromosomes after crossover
- One-Node-Two-Edges crossover

Chromosomes before crossover

\[S \rightarrow N_1 \rightarrow N_2 \rightarrow N_5 \rightarrow D \]

\[S \rightarrow N_4 \rightarrow N_3 \rightarrow N_1 \rightarrow D \]

Chromosomes after crossover

\[S \rightarrow N_4 \rightarrow N_6 \rightarrow N_5 \rightarrow D \]

\[S \rightarrow N_4 \rightarrow N_6 \rightarrow N_1 \rightarrow N_2 \rightarrow N_5 \rightarrow D \]
Mutation

- Two mutation types
Simulation results
References

Thank You for Your interest