Extremality, Stationarity and Regularity of Collections of Sets

Alexander Kruger

Centre for Informatics and Applied Optimization, School of Science, Information Technology & Engineering University of Ballarat, Australia a.kruger@ballarat.edu.au

Coauthor: Marco López Cerda

Turku, 28 June 2012

- Convex case
 - Separation theorem

- 一司

.∃ >

Convex case

- Separation theorem
- (Bounded) linear regularity (Bauschke, Borwein, 1993; Ng, Yang, 2004; Burke, Deng, 2005)

- Convex case
 - Separation theorem
 - (Bounded) linear regularity (Bauschke, Borwein, 1993; Ng, Yang, 2004; Burke, Deng, 2005)
- Nonconvex case
 - Dubovitskii-Milyutin formalism (1965)

- Convex case
 - Separation theorem
 - (Bounded) linear regularity (Bauschke, Borwein, 1993; Ng, Yang, 2004; Burke, Deng, 2005)
- Nonconvex case
 - Dubovitskii-Milyutin formalism (1965)
 - Extremal principle (Kruger, Mordukhovich, 1980)

- Convex case
 - Separation theorem
 - (Bounded) linear regularity (Bauschke, Borwein, 1993; Ng, Yang, 2004; Burke, Deng, 2005)
- Nonconvex case
 - Dubovitskii-Milyutin formalism (1965)
 - Extremal principle (Kruger, Mordukhovich, 1980)
 - Boundary condition, nonconvex separation property (Borwein, Jofré, 1998)
 - Jamesons property (G) (1972)
 - Metric inequality (loffe, 1989; Ngai, Théra, 2001)
 - (Strong) conical hull intersection property (Chui, Deutsch, Ward, 1992; Deutsch, Li, Ward; 1997)

Outline

Finite Collections

- Extremal Collection of Sets
- Extremal Principle
- Stationarity vs Regularity

Infinite Collections

- Stationarity vs Regularity
- Intersection Rule
- Constrained Optimization

Stationarity and Regularity of Finite Collections Extremal Collection of Sets (Kruger, Mordukhovich, 1980)

Stationarity and Regularity of Finite Collections Extremal Collection of Sets (Kruger, Mordukhovich, 1980)

Stationarity and Regularity of Finite Collections Extremal Collection of Sets (Kruger, Mordukhovich, 1980)

Stationarity and Regularity of Finite Collections Extremal Collection of Sets

X – Banach space, $\mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad 1 < |I| < \infty, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i$

- **4 ∃ ≻** 4

Stationarity and Regularity of Finite Collections Extremal Collection of Sets

X – Banach space, $\mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad 1 < |I| < \infty, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i$

Definition

 Ω is *locally extremal* at \bar{x} if $\exists \rho > 0 \ \forall \varepsilon > 0 \ \exists a_i \in X$, $i \in I$,

$$\max_{i\in I} \|a_i\| < \varepsilon \quad \text{and} \quad \bigcap_{i\in I} (\Omega_i - a_i) \bigcap B_\rho(\bar{x}) = \emptyset$$

Stationarity and Regularity of Finite Collections Extremal Collection of Sets

$$egin{array}{ll} X &- {
m Banach \ space,} \ oldsymbol{\Omega} := \{\Omega_i\}_{i\in I}\subset X, & 1<|I|<\infty, & ar{x}\inigcap_{i\in I}\Omega_i \end{array}$$

Definition

 Ω is *locally extremal* at \bar{x} if $\exists \rho > 0 \ \forall \varepsilon > 0 \ \exists a_i \in X$, $i \in I$,

$$\max_{i\in I} \|a_i\| < \varepsilon \quad \text{and} \quad \bigcap_{i\in I} (\Omega_i - a_i) \bigcap B_\rho(\bar{x}) = \emptyset$$

$$egin{aligned} & heta_
ho[oldsymbol{\Omega}](ar{x}):=\sup\Bigl\{r\geq 0:\ &igcap_{i\in I}(\Omega_i-a_i)igcap B_
ho(ar{x})
eq \emptyset, orall a_i\in r\mathbb{B}\Bigr\}=0 \end{aligned}$$

Stationarity and Regularity of Finite Collections Extremal Collection of Sets: Dual Characterization

Stationarity and Regularity of Finite Collections Extremal Collection of Sets: Dual Characterization

Stationarity and Regularity of Finite Collections Fréchet Normal Cone

$\bar{x} \in \Omega$ Fréchet normal cone:

$$N_{\Omega}(\bar{x}) = \left\{ x^* \in X^*: \ \limsup_{x \stackrel{\Omega}{ o} \bar{x}} rac{\langle x^*, x - \bar{x}
angle}{\|x - \bar{x}\|} \leq 0
ight\}$$

Stationarity and Regularity of Finite Collections Extremal Principle [Kruger, Mordukhovich (1980); Mordukhovich, Shao (1996)]

Extremal Principle

 Ω_i , $i \in I$, are closed. If Ω is locally extremal at \bar{x} then $\forall \varepsilon > 0$ $\exists x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x}), x_i^* \in N_{\Omega_i}(x_i) \ (i \in I)$

$$\left\|\sum_{i\in I} x_i^*\right\| < \varepsilon \sum_{i\in I} \|x_i^*\|$$

Stationarity and Regularity of Finite Collections Extremal Principle [Kruger, Mordukhovich (1980); Mordukhovich, Shao (1996)]

Extremal Principle

 Ω_i , $i \in I$, are closed. If Ω is locally extremal at \bar{x} then $\forall \varepsilon > 0$ $\exists x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x}), x_i^* \in N_{\Omega_i}(x_i) \ (i \in I)$

$$\left\|\sum_{i\in I} x_i^*\right\| < \varepsilon \sum_{i\in I} \|x_i^*\|$$

Theorem

Extremal Principle holds if and only if X is Asplund

Stationarity and Regularity of Finite Collections Extremal Principle [Kruger, Mordukhovich (1980); Mordukhovich, Shao (1996)]

Extremal Principle

 Ω_i , $i \in I$, are closed. If Ω is locally extremal at \bar{x} then $\forall \varepsilon > 0$ $\exists x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x}), x_i^* \in N_{\Omega_i}(x_i) \ (i \in I)$

$$\left\|\sum_{i\in I} x_i^*\right\| < \varepsilon \sum_{i\in I} \|x_i^*\|$$

Theorem

Extremal Principle holds if and only if X is Asplund

$$\hat{\eta}[\mathbf{\Omega}](\bar{x}) := \liminf_{\substack{x_i \to \bar{x}, x_i^* \in N_{\Omega_i}(x_i) \ (i \in I) \\ \sum_{i \in I} ||x_i^*|| = 1}} \left\| \sum_{i \in I} x_i^* \right\| = 0$$

Stationarity and Regularity of Finite Collections Stationarity vs Regularity

Definition

Ω is approximately stationary at \bar{x} if $\forall ε > 0 \exists ρ ∈ (0, ε)$, $ω_i ∈ Ω_i ∩ B_ε(\bar{x}), a_i ∈ X (i ∈ I)$

$$\max_{i\in I} \|a_i\| < \varepsilon\rho \quad \text{and} \quad \bigcap_{i\in I} (\Omega_i - \omega_i - a_i) \bigcap (\rho\mathbb{B}) = \emptyset$$

Stationarity and Regularity of Finite Collections Stationarity vs Regularity

Definition

Ω is approximately stationary at \bar{x} if $\forall ε > 0 \exists ρ ∈ (0, ε)$, $ω_i ∈ Ω_i ∩ B_ε(\bar{x}), a_i ∈ X (i ∈ I)$

$$\max_{i\in I} \|a_i\| < \varepsilon\rho \quad \text{and} \quad \bigcap_{i\in I} (\Omega_i - \omega_i - a_i) \bigcap (\rho\mathbb{B}) = \emptyset$$

Local extremality \Rightarrow approximate stationarity

Stationarity and Regularity of Finite Collections Stationarity vs Regularity

Definition

Ω is approximately stationary at \bar{x} if $\forall ε > 0 \exists ρ ∈ (0, ε)$, $ω_i ∈ Ω_i ∩ B_ε(\bar{x}), a_i ∈ X (i ∈ I)$

$$\max_{i\in I} \|a_i\| < \varepsilon\rho \quad \text{and} \quad \bigcap_{i\in I} (\Omega_i - \omega_i - a_i) \bigcap (\rho\mathbb{B}) = \emptyset$$

 ${\sf Local \ extremality} \quad \Rightarrow \quad {\sf approximate \ stationarity}$

$$\hat{\theta}[\boldsymbol{\Omega}](\bar{\mathbf{x}}) := \liminf_{\substack{\omega_i \xrightarrow{\Omega_{i}_{\bar{\mathbf{x}}}}\\\rho \to +0}} \frac{\theta_{\rho}[\{\Omega_i - \omega_i\}_{i \in I}](0)}{\rho} = 0$$

Definition

 ${f \Omega}$ is

- approximately stationary at \bar{x} if $\hat{ heta}[\mathbf{\Omega}](\bar{x}) = 0$
- normally approximately stationary at \bar{x} if $\hat{\eta}[\mathbf{\Omega}](\bar{x}) = 0$

Definition

- Ω is
 - approximately stationary at \bar{x} if $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = 0$
 - normally approximately stationary at \bar{x} if $\hat{\eta}[\mathbf{\Omega}](\bar{x}) = 0$
 - uniformly regular at \bar{x} if $\hat{\theta}[\mathbf{\Omega}](\bar{x}) > 0$
 - normally uniformly regular at \bar{x} if $\hat{\eta}[\mathbf{\Omega}](\bar{x}) > 0$

$$\hat{\theta}[\mathbf{\Omega}](\bar{x}) = \hat{\eta}[\mathbf{\Omega}](\bar{x}) > 0$$

Turku 2012 11 / 30

 $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = \hat{\eta}[\mathbf{\Omega}](\bar{x}) > 0$

 $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = \hat{\eta}[\mathbf{\Omega}](\bar{x}) = 0$

Turku 2012 11 / 30

Stationarity and Regularity of Finite Collections Extended Extremal Principle

 Ω_i , $i \in I$, are closed

Theorem

- $\hat{\theta}[\mathbf{\Omega}](\bar{x}) \leq \hat{\eta}[\mathbf{\Omega}](\bar{x})$
- If X is Asplund then $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = \hat{\eta}[\mathbf{\Omega}](\bar{x})$

Stationarity and Regularity of Finite Collections Extended Extremal Principle

 Ω_i , $i \in I$, are closed

Theorem

- $\hat{\theta}[\mathbf{\Omega}](\bar{x}) \leq \hat{\eta}[\mathbf{\Omega}](\bar{x})$
- If X is Asplund then $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = \hat{\eta}[\mathbf{\Omega}](\bar{x})$

Extended Extremal Principle

 $\pmb{\Omega}$ is approximately stationary at \bar{x} if and only if it is normally approximately stationary at \bar{x}

Stationarity and Regularity of Finite Collections Extended Extremal Principle

 Ω_i , $i \in I$, are closed

Theorem

- $\hat{\theta}[\mathbf{\Omega}](\bar{x}) \leq \hat{\eta}[\mathbf{\Omega}](\bar{x})$
- If X is Asplund then $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = \hat{\eta}[\mathbf{\Omega}](\bar{x})$

Extended Extremal Principle

 $\pmb{\Omega}$ is approximately stationary at \bar{x} if and only if it is normally approximately stationary at \bar{x}

Theorem

Extremal Principle holds \Leftrightarrow Extended Extremal Principle holds \Leftrightarrow X is Asplund

Stationarity and Regularity of Infinite Collections

X – Banach space,

 $\mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i$

Stationarity and Regularity of Infinite Collections

 $\begin{array}{ll} X - \text{Banach space,} \\ \mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} := \{J \subset I \mid 1 < |J| < \infty \} \end{array}$

Stationarity and Regularity of Infinite Collections

X - Banach space, $\mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i$ $\mathcal{J} := \{ J \subset I \mid 1 < |J| < \infty \}$ $\hat{ heta}[oldsymbol{\Omega}](ar{x}) := \sup_{arepsilon>0} \quad \inf_{
ho\in(0,arepsilon), \ J\in\mathcal{J}} \quad rac{ heta_
ho[\{\Omega_i-\omega_i\}_{i\in J}](0)}{
ho}$ $\omega_i \in B_{\varepsilon}(\bar{x}) \cap \Omega_i \ (i \in J)$ $\hat{\eta}[\mathbf{\Omega}](\bar{x}) := \sup_{\varepsilon > 0} \inf_{\substack{x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x}), \, x_i^* \in N_{\Omega_i}(x_i) \, (i \in J), \\ x_i \in J}} \left\| \sum_{i \in J} x_i^* \right\|$ $\sum_{i \in I} ||x_i^*|| = 1$

$$egin{aligned} X &- ext{Banach space,} \ m{\Omega} &:= \{\Omega_i\}_{i\in I} \subset X, \quad |I| > 1, \quad ar{x} \in igcap_{i\in I} \Omega_i \ \mathcal{J} &:= \{J \subset I | \ 1 < |J| < \infty\} \end{aligned}$$

Definition

 Ω is

- approximately stationary at \bar{x} if $\hat{\theta}[\mathbf{\Omega}](\bar{x}) = 0$
- normally approximately stationary at \bar{x} if $\hat{\eta}[\mathbf{\Omega}](\bar{x}) = 0$
- uniformly regular at \bar{x} if $\hat{\theta}[\mathbf{\Omega}](\bar{x}) > 0$
- normally uniformly regular at \bar{x} if $\hat{\eta}[\mathbf{\Omega}](\bar{x}) > 0$

$$X$$
 – Asplund space, Ω_i , $i \in I$, – closed, $ar{x} \in igcap_{i \in I} \Omega_i$

Theorem

 Ω is approximately stationary at \bar{x} if and only if it is normally approximately stationary at \bar{x}

$$X$$
 – Asplund space, Ω_i , $i \in I$, – closed, $ar{x} \in igcap_{i \in I} \Omega_i$

Theorem

 Ω is approximately stationary at \bar{x} if and only if it is normally approximately stationary at \bar{x} Moreover, for any $\varepsilon > 0$, the corresponding properties are satisfied with the same set of indices J

$$X$$
 – Asplund space, Ω_i , $i \in I$, – closed, $\bar{x} \in \bigcap_{i \in I} \Omega_i$

Theorem

 Ω is approximately stationary at \bar{x} if and only if it is normally approximately stationary at \bar{x} Moreover, for any $\varepsilon > 0$, the corresponding properties are satisfied with the same set of indices J

 $\pmb{\Omega}$ is uniformly regular at \bar{x} if and only if it is normally uniformly regular at \bar{x}

 $\begin{array}{ll} X - \text{Banach space,} \\ \mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} := \{J \subset I \mid 1 < |J| < \infty \} \end{array}$

Image: A matrix and a matrix

 $\begin{aligned} X &- \text{Banach space,} \\ \mathbf{\Omega} &:= \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} &:= \{J \subset I \mid 1 < |J| < \infty\} \\ \Phi &: \mathbb{R}_+ \to \mathbb{R}_+ \cup \{+\infty\} \end{aligned}$

 $\mathcal{J}_{\alpha} := \{J \subset I | 1 < |J| < \Phi(\alpha)\}$

Image: A matrix and a matrix

$$\begin{array}{l} X - \text{Banach space,} \\ \mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega \\ \mathcal{J} := \{J \subset I | \ 1 < |J| < \infty\} \\ \Phi : \mathbb{R}_+ \to \mathbb{R}_+ \cup \{+\infty\} \\ \mathcal{J}_\alpha := \{J \subset I | \ 1 < |J| < \Phi(\alpha)\} \end{array}$$

Definition

Ω is approximately Φ-stationary at \bar{x} if $\forall \varepsilon > 0 \exists \rho \in (0, \varepsilon)$; $\alpha \in (0, \varepsilon)$; $J \in \mathcal{J}_{\alpha}$; $\omega_i \in \Omega_i \cap B_{\varepsilon}(\bar{x})$, $a_i \in X$ $(i \in J)$

$$\max_{i\in J} \|a_i\| < \alpha\rho \quad \text{and} \quad \bigcap_{i\in J} (\Omega_i - \omega_i - a_i) \bigcap (\rho\mathbb{B}) = \emptyset$$

$$\begin{array}{l} X - \text{Banach space,} \\ \mathbf{\Omega} := \{\Omega_i\}_{i \in I} \subset X, \quad |I| > 1, \quad \bar{x} \in \bigcap_{i \in I} \Omega \\ \mathcal{J} := \{J \subset I | \ 1 < |J| < \infty\} \\ \Phi : \mathbb{R}_+ \to \mathbb{R}_+ \cup \{+\infty\} \\ \mathcal{J}_\alpha := \{J \subset I | \ 1 < |J| < \Phi(\alpha)\} \end{array}$$

Definition

Ω is normally approximately Φ-stationary at \bar{x} if $\forall \varepsilon > 0 \exists \alpha \in (0, \varepsilon)$; $J \in \mathcal{J}_{\alpha}$; $x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x})$, $x_i \in N_{\Omega_i}(x_i)$ $(i \in J)$

$$\left\|\sum_{i\in J} x_i^*\right\| < \varepsilon \sum_{i\in J} \|x_i^*\|$$

X – Asplund space, Ω_i , $i \in I$, – closed, $\bar{x} \in \bigcap_{i \in I} \Omega_i$

 $\Phi:\mathbb{R}_+\to\mathbb{R}_+\cup\{+\infty\}$

Theorem

 Ω is approximately Φ -stationary at \bar{x} if and only if it is normally approximately Φ -stationary at \bar{x} Moreover, for any $\varepsilon > 0$, the corresponding properties are satisfied with the same set of indices J

 $\pmb{\Omega}$ is uniformly $\Phi\text{-regular}$ at \bar{x} if and only if it is normally uniformly $\Phi\text{-regular}$ at \bar{x}

- < A > < B > < B >

Intersection Rule

X – Asplund space, Ω_i , $i \in I$, – closed, $\bar{x} \in \bigcap_{i \in I} \Omega_i$

- 4 🗇 🕨 🔺 🖹 🕨 🤘

Intersection Rule Fréchet Finite Normals

 $\begin{array}{ll} X - \text{Asplund space,} & \Omega_i, \ i \in I, - \text{closed,} & \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} := \{ J \subset I | \ 0 < |J| < \infty \} \end{array}$

• • • • • • • • • • • •

Intersection Rule Fréchet Finite Normals

 $\begin{array}{ll} X - \text{Asplund space,} & \Omega_i, \ i \in I, - \text{closed,} & \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} := \{J \subset I | \ 0 < |J| < \infty\} \end{array}$

Definition

 $\begin{array}{l} x^* \in X^* \text{ is } \textit{Fréchet finitely normal to} \bigcap_{i \in I} \Omega_i \text{ at } \bar{x} \text{ if } \forall \varepsilon > 0 \ \exists \rho > 0 \\ \text{and } J \in \mathcal{J} \\ \langle x^*, x - \bar{x} \rangle < \varepsilon \| x - \bar{x} \| \quad \forall x \in \bigcap_{i \in J} \Omega_i \bigcap B_\rho(\bar{x}) \setminus \{ \bar{x} \} \end{array}$

Intersection Rule

 $\begin{array}{ll} X - \text{Asplund space,} & \Omega_i, \ i \in I, - \text{closed,} & \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} := \{ J \subset I | \ 0 < |J| < \infty \} \end{array}$

Theorem

If $x^* \in X^*$ is Fréchet finitely normal to $\bigcap_{i \in I} \Omega_i$ at \bar{x} , then $\forall \varepsilon > 0$ $\exists J \in \mathcal{J}$; $x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x})$, $x_i^* \in N_{\Omega_i}(x_i)$ $(i \in J)$; $\lambda \ge 0$ $\sum_{i \in J} \|x_i^*\| + \lambda = 1$ and $\|\lambda x^* - \sum_{i \in J} x_i^*\| < \varepsilon$

Intersection Rule

 $\begin{array}{ll} X - \text{Asplund space,} & \Omega_i, \ i \in I, - \text{closed,} & \bar{x} \in \bigcap_{i \in I} \Omega_i \\ \mathcal{J} := \{ J \subset I | \ 0 < |J| < \infty \} \end{array}$

Corollary

Suppose Ω is Fréchet normally uniformly regular at \bar{x} . If $x^* \in X^*$ is finitely normal to the intersection $\bigcap_{i \in I} \Omega_i$ at \bar{x} , then $\forall \varepsilon > 0 \exists J \in \mathcal{J}$; $x_i \in \Omega_i \cap B_{\varepsilon}(\bar{x}), x_i^* \in N_{\Omega_i}(x_i)$ $(i \in J)$

$$\left\|x^* - \sum_{i \in J} x_i^*\right\| < \varepsilon$$

Constrained Optimization Finite Stationarity

 $\begin{array}{ll} \text{Minimize} \quad f_0(x) \quad \text{subject to} \quad f_i(x) \leq 0, \ i \in I \\ f_i: X \to \mathbb{R}_{\infty}, \ f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0 \end{array}$

 $\begin{array}{ll} \text{Minimize} \quad f_0(x) \quad \text{subject to} \quad f_i(x) \leq 0, \ i \in I \\ f_i: X \to \mathbb{R}_{\infty}, \ f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0 \end{array}$

Definition

$$ar{x}$$
 is *finitely stationary* if $orall arepsilon > 0$ and $J \in \mathcal{J}$

$$\sup_{i\in J\cup\{0\}} f_i(x) + \varepsilon \|x - \bar{x}\| > 0 \quad \forall x \in B_\rho(\bar{x}) \setminus \{\bar{x}\}$$

∃ ≥ ≥

 $\begin{array}{ll} \text{Minimize} \quad f_0(x) \quad \text{subject to} \quad f_i(x) \leq 0, \ i \in I \\ f_i: X \to \mathbb{R}_{\infty}, \ f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0 \end{array}$

Definition

$$ar{x}$$
 is finitely stationary if $orall arepsilon > 0$ $\exists
ho > 0$ and $J \in \mathcal{J}$

$$\sup_{i\in J\cup\{0\}} f_i(x) + \varepsilon \|x - \bar{x}\| > 0 \quad \forall x \in B_\rho(\bar{x}) \setminus \{\bar{x}\}$$

$$\varepsilon$$
-active indices: $I_{\varepsilon}(\bar{x}) := \left\{ i \in I \left| \sup_{x \in B_{\varepsilon}(\bar{x})} f_i(x) \ge -\varepsilon \right. \right\}$

- ₹ 🕨 🕨

 $\begin{array}{ll} \text{Minimize} \quad f_0(x) \quad \text{subject to} \quad f_i(x) \leq 0, \ i \in I \\ f_i: X \to \mathbb{R}_{\infty}, \ f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0 \end{array}$

Definition

$$ar{x}$$
 is finitely stationary if $orall arepsilon > 0$ $\exists
ho > 0$ and $J \in \mathcal{J}$

$$\sup_{i\in J\cup\{0\}} f_i(x) + \varepsilon \|x - \bar{x}\| > 0 \quad \forall x \in B_\rho(\bar{x}) \setminus \{\bar{x}\}$$

$$arepsilon$$
-active indices: $I_{arepsilon}(ar{x}) := \left\{ i \in I \left| \sup_{x \in B_{arepsilon}(ar{x})} f_i(x) \ge -\varepsilon
ight\}
ight.$
 $\mathcal{J}_{arepsilon}(ar{x}) := \left\{ J \subset I_{arepsilon}(ar{x}) \mid 0 < |J| < \infty
ight\}$

→ ∃ >

$$f_i: X \to \mathbb{R}_{\infty}, f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0$$

Definition

 $\{f_i\}_{i \in I \cup \{0\}}$ is normally uniformly regular at \bar{x} if $\exists \alpha > 0$, $\varepsilon > 0$

$$\left\|\sum_{i\in J\cup\{0\}} x_i^*\right\| + \sum_{i\in J\cup\{0\}} \lambda_i \ge \alpha \sum_{i\in J\cup\{0\}} \|x_i^*\|$$

 $\begin{array}{l} \forall J \in \mathcal{J}_{\varepsilon}(\bar{x}); \\ \forall (x_i, \mu_i) \in \operatorname{epi} f_i \cap B_{\varepsilon}(\bar{x}, 0), \ (x_i^*, -\lambda_i) \in N_{\operatorname{epi} f_i}(x_i, \mu_i) \ (i \in J \cup \{0\}) \end{array} \end{array}$

A = A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Minimize $f_0(x)$ subject to $f_i(x) \le 0, i \in I$

$$f_i: X \to \mathbb{R}_{\infty}, f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0$$

Theorem

Suppose f_i , $i \in I \cup \{0\}$, are lsc near \bar{x} and $\{f_i\}_{i \in I \cup \{0\}}$ is normally uniformly regular at \bar{x} . If \bar{x} is finitely stationary, then $\forall \varepsilon > 0$, $\exists J \in \mathcal{J}_{\varepsilon}(\bar{x})$; $x_i \in B_{\varepsilon}(\bar{x})$, $x_i^* \in X^*$, $\lambda_i \ge 0$ $(i \in J \cup \{0\})$

$$\begin{split} f_i(x_i) &\leq f(\bar{x}) + \varepsilon; \ x_i^* \in \lambda_i \partial f_i(x_i) \ \text{if} \ \lambda_i > 0, \ x_i^* \in \partial^{\infty} f_i(x_i) \ \text{if} \ \lambda_i = 0 \\ \\ \left\| \sum_{i \in J \cup \{0\}} x_i^* \right\| &< \varepsilon \quad \text{and} \quad \sum_{i \in J \cup \{0\}} \lambda_i = 1 \end{split}$$

Minimize $f_0(x)$ subject to $f_i(x) \le 0, i \in I$

$$f_i: X \to \mathbb{R}_{\infty}, f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0$$

Corollary

Suppose f_i , $i \in I \cup \{0\}$, are uniformly Lipschitz near \bar{x} , and $\{f_i\}_{i \in I \cup \{0\}}$ is normally uniformly regular at \bar{x} . If \bar{x} is finitely stationary, then $\forall \varepsilon > 0, \exists J \in \mathcal{J}_{\varepsilon}(\bar{x}); x_i \in B_{\varepsilon}(\bar{x}), x_i^* \in \partial f_i(x_i), \lambda_i \ge 0 \ (i \in J \cup \{0\})$

$$\left\|\sum_{i\in J\cup\{0\}}\lambda_i x_i^*\right\| < \varepsilon \quad \text{and} \quad \sum_{i\in J\cup\{0\}}\lambda_i = 1$$

 $\text{Minimize} \quad f_0(x) \quad \text{subject to} \quad f_i(x) \leq 0, \ i \in I$

$$f_i: X \to \mathbb{R}_{\infty}, f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0$$

Definition

Normal constraint qualification: $\exists \alpha > 0, \ \varepsilon > 0$

$$\left\|\sum_{i\in J} x_i^*\right\| \ge \alpha \sum_{i\in J} \lambda_i$$

 $\forall J \in \mathcal{J}_{\varepsilon}(\bar{x}); (x_i, \mu_i) \in \operatorname{epi} f_i \cap B_{\varepsilon}(\bar{x}, 0), (x_i^*, -\lambda_i) \in N_{\operatorname{epi} f_i}(x_i, \mu_i)$ (*i* \in J)

· < /⊒ > < ∃ > <

Minimize $f_0(x)$ subject to $f_i(x) \le 0, i \in I$

 $f_i: X \to \mathbb{R}_{\infty}, \ f_i(\bar{x}) < \infty \ (i \in I \cup \{0\}), \quad f_0(\bar{x}) = 0$

Corollary

Suppose f_i , $i \in I \cup \{0\}$, are uniformly Lipschitz near \bar{x} , $\{f_i\}_{i \in I \cup \{0\}}$ is normally uniformly regular at \bar{x} , and the normal constraint qualification is satisfied. If \bar{x} is finitely stationary, then $\forall \varepsilon > 0$ $\exists J \in \mathcal{J}_{\varepsilon}(\bar{x})$; $x_i \in B_{\varepsilon}(\bar{x})$, $x_i^* \in \partial f_i(x_i)$ $(i \in J \cup \{0\})$; $\lambda_i \ge 0$ $(i \in J)$ $\left\| x_0^* + \sum_{i \in J} \lambda_i x_i^* \right\| < \varepsilon$

• • • • • • • • • • • • •

References

- A. Y. Kruger and B. S. Mordukhovich, *Extremal points and the Euler equation in nonsmooth optimization*, Dokl. Akad. Nauk BSSR 24:8 (1980), 684–687, in Russian.
- B. S. Mordukhovich and Y. Shao, *Extremal characterizations of Asplund spaces*, Proc. Amer. Math. Soc. **124** (1996), 197–205.
- A. Y. Kruger, Weak stationarity: eliminating the gap between necessary and sufficient conditions, Optimization 53 (2004), 147–164.
- A. Y. Kruger, Stationarity and regularity of set systems, Pacif. J. Optimiz. 1 (2005), 101–126.
- A. Y. Kruger, About regularity of collections of sets, Set-Valued Anal. 14 (2006), 187–206.
- A. Y. Kruger, About stationarity and regularity in variational analysis, Taiwanese J. Math. 13 (2009), 1737–1785.

References

- A. Y. Kruger and M. A. López, Stationarity and regularity of infinite collections of sets, J. Optim. Theory Appl. 154 (2012).
- A. Y. Kruger and M. A. López, Stationarity and regularity of infinite collections of sets. Applications to infinitely constrained optimization, J. Optim. Theory Appl. 155 (2012).

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト