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Collections of Sets

Convex case

Separation theorem

(Bounded) linear regularity (Bauschke, Borwein, 1993; Ng,
Yang, 2004; Burke, Deng, 2005)

Nonconvex case

Dubovitskii–Milyutin formalism (1965)
Extremal principle (Kruger, Mordukhovich, 1980)
Boundary condition, nonconvex separation property (Borwein,
Jofré, 1998)
Jamesons property (G) (1972)
Metric inequality (Ioffe, 1989; Ngai, Théra, 2001)
(Strong) conical hull intersection property (Chui, Deutsch,
Ward, 1992; Deutsch, Li, Ward; 1997)
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Outline

1 Finite Collections
Extremal Collection of Sets
Extremal Principle
Stationarity vs Regularity

2 Infinite Collections
Stationarity vs Regularity
Intersection Rule
Constrained Optimization
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Stationarity and Regularity of Finite Collections
Extremal Collection of Sets (Kruger, Mordukhovich, 1980)

x̄Ω1 Ω2

x̄Ω1 Ω2 x̄Ω1 Ω2 x̄ Ω
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Stationarity and Regularity of Finite Collections
Extremal Collection of Sets

X – Banach space,
Ω := {Ωi}i∈I ⊂ X , 1 < |I | <∞, x̄ ∈

⋂
i∈I Ωi

Definition
Ω is locally extremal at x̄ if ∃ρ > 0 ∀ε > 0 ∃ai ∈ X , i ∈ I ,

max
i∈I
‖ai‖ < ε and

⋂
i∈I

(Ωi − ai)
⋂

Bρ(x̄) = ∅

θρ[Ω](x̄) := sup
{

r ≥ 0 :⋂
i∈I

(Ωi − ai)
⋂

Bρ(x̄) 6= ∅,∀ai ∈ rB
}

= 0
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Stationarity and Regularity of Finite Collections
Extremal Collection of Sets: Dual Characterization

x̄Ω1 Ω2
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Stationarity and Regularity of Finite Collections
Fréchet Normal Cone

x̄ ∈ Ω
Fréchet normal cone:

NΩ(x̄) =

{
x∗ ∈ X ∗ : lim sup

x
Ω→x̄

〈x∗, x − x̄〉
‖x − x̄‖

≤ 0

}
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Stationarity and Regularity of Finite Collections
Extremal Principle [Kruger, Mordukhovich (1980); Mordukhovich, Shao (1996)]

Extremal Principle
Ωi , i ∈ I , are closed. If Ω is locally extremal at x̄ then ∀ε > 0
∃xi ∈ Ωi ∩ Bε(x̄), x∗i ∈ NΩi

(xi) (i ∈ I )∥∥∥∥∥∑
i∈I

x∗i

∥∥∥∥∥ < ε
∑
i∈I

‖x∗i ‖

Theorem
Extremal Principle holds if and only if X is Asplund

η̂[Ω](x̄) := lim inf
xi

Ωi→x̄, x∗
i
∈NΩi

(xi ) (i∈I )∑
i∈I ‖x

∗
i
‖=1

∥∥∥∥∥∑
i∈I

x∗i

∥∥∥∥∥ = 0
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Stationarity and Regularity of Finite Collections
Stationarity vs Regularity

Definition
Ω is approximately stationary at x̄ if ∀ε > 0 ∃ρ ∈ (0, ε),
ωi ∈ Ωi ∩ Bε(x̄), ai ∈ X (i ∈ I )

max
i∈I
‖ai‖ < ερ and

⋂
i∈I

(Ωi − ωi − ai)
⋂

(ρB) = ∅

Local extremality ⇒ approximate stationarity

θ̂[Ω](x̄) := lim inf
ωi

Ωi→x̄
ρ→+0

θρ[{Ωi − ωi}i∈I ](0)

ρ
= 0
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Stationarity and Regularity of Finite Collections
Regularity vs Stationarity

Definition
Ω is

approximately stationary at x̄ if θ̂[Ω](x̄) = 0

normally approximately stationary at x̄ if η̂[Ω](x̄) = 0

uniformly regular at x̄ if θ̂[Ω](x̄) > 0

normally uniformly regular at x̄ if η̂[Ω](x̄) > 0
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Stationarity and Regularity of Finite Collections
Regularity vs Stationarity

x̄Ω1 Ω2

θ̂[Ω](x̄) = η̂[Ω](x̄) > 0

x̄Ω1 Ω2

ω1

ω2

θ̂[Ω](x̄) = η̂[Ω](x̄) = 0
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Stationarity and Regularity of Finite Collections
Extended Extremal Principle

Ωi , i ∈ I , are closed

Theorem

θ̂[Ω](x̄) ≤ η̂[Ω](x̄)

If X is Asplund then θ̂[Ω](x̄) = η̂[Ω](x̄)

Extended Extremal Principle
Ω is approximately stationary at x̄ if and only if it is normally
approximately stationary at x̄

Theorem
Extremal Principle holds ⇔ Extended Extremal Principle holds ⇔ X
is Asplund
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Stationarity and Regularity of Infinite Collections

X – Banach space,
Ω := {Ωi}i∈I ⊂ X , |I | > 1, x̄ ∈

⋂
i∈I Ωi

J := {J ⊂ I | 1 < |J | <∞}

θ̂[Ω](x̄) := sup
ε>0

inf
ρ∈(0,ε), J∈J

ωi∈Bε(x̄)∩Ωi (i∈J)

θρ[{Ωi − ωi}i∈J ](0)

ρ

η̂[Ω](x̄) := sup
ε>0

inf
J∈J

xi∈Ωi∩Bε(x̄), x∗i ∈NΩi
(xi ) (i∈J),∑

i∈J‖x∗i ‖=1

∥∥∥∥∥∑
i∈J

x∗i

∥∥∥∥∥
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Stationarity and Regularity of Infinite Collections
Regularity vs Stationarity

X – Banach space,
Ω := {Ωi}i∈I ⊂ X , |I | > 1, x̄ ∈

⋂
i∈I Ωi

J := {J ⊂ I | 1 < |J | <∞}

Definition
Ω is

approximately stationary at x̄ if θ̂[Ω](x̄) = 0

normally approximately stationary at x̄ if η̂[Ω](x̄) = 0

uniformly regular at x̄ if θ̂[Ω](x̄) > 0

normally uniformly regular at x̄ if η̂[Ω](x̄) > 0
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Stationarity and Regularity of Infinite Collections
Stationarity vs Regularity

X – Asplund space, Ωi , i ∈ I , – closed, x̄ ∈
⋂

i∈I Ωi

Theorem
Ω is approximately stationary at x̄ if and only if it is normally
approximately stationary at x̄

Moreover, for any ε > 0, the corresponding properties are satisfied
with the same set of indices J

Ω is uniformly regular at x̄ if and only if it is normally uniformly
regular at x̄
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Stationarity and Regularity of Infinite Collections
Φ-stationarity vs Φ-regularity

X – Banach space,
Ω := {Ωi}i∈I ⊂ X , |I | > 1, x̄ ∈

⋂
i∈I Ωi

J := {J ⊂ I | 1 < |J | <∞}

Φ : R+ → R+ ∪ {+∞}
Jα := {J ⊂ I | 1 < |J | < Φ(α)}

Definition
Ω is approximately Φ-stationary at x̄ if ∀ε > 0 ∃ρ ∈ (0, ε);
α ∈ (0, ε); J ∈ Jα; ωi ∈ Ωi ∩ Bε(x̄), ai ∈ X (i ∈ J)

max
i∈J
‖ai‖ < αρ and

⋂
i∈J

(Ωi − ωi − ai)
⋂

(ρB) = ∅
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Stationarity and Regularity of Infinite Collections
Φ-stationarity vs Φ-regularity

X – Asplund space, Ωi , i ∈ I , – closed, x̄ ∈
⋂

i∈I Ωi

Φ : R+ → R+ ∪ {+∞}

Theorem
Ω is approximately Φ-stationary at x̄ if and only if it is normally
approximately Φ-stationary at x̄
Moreover, for any ε > 0, the corresponding properties are satisfied
with the same set of indices J

Ω is uniformly Φ-regular at x̄ if and only if it is normally uniformly
Φ-regular at x̄
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Intersection Rule
Fréchet Finite Normals

X – Asplund space, Ωi , i ∈ I , – closed, x̄ ∈
⋂

i∈I Ωi

J := {J ⊂ I | 0 < |J | <∞}

Definition

x∗ ∈ X ∗ is Fréchet finitely normal to
⋂

i∈I Ωi at x̄ if ∀ε > 0 ∃ρ > 0
and J ∈ J

〈x∗, x − x̄〉 < ε‖x − x̄‖ ∀x ∈
⋂
i∈J

Ωi

⋂
Bρ(x̄) \ {x̄}
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Intersection Rule
Intersection Rule

X – Asplund space, Ωi , i ∈ I , – closed, x̄ ∈
⋂

i∈I Ωi

J := {J ⊂ I | 0 < |J | <∞}

Theorem
If x∗ ∈ X ∗ is Fréchet finitely normal to

⋂
i∈I Ωi at x̄ , then ∀ε > 0

∃J ∈ J ; xi ∈ Ωi ∩ Bε(x̄), x∗i ∈ NΩi
(xi) (i ∈ J); λ ≥ 0∑

i∈J

‖x∗i ‖+ λ = 1 and

∥∥∥∥∥λx∗ −
∑
i∈J

x∗i

∥∥∥∥∥ < ε
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Intersection Rule
Intersection Rule

X – Asplund space, Ωi , i ∈ I , – closed, x̄ ∈
⋂

i∈I Ωi

J := {J ⊂ I | 0 < |J | <∞}

Corollary
Suppose Ω is Fréchet normally uniformly regular at x̄ . If x∗ ∈ X ∗ is
finitely normal to the intersection

⋂
i∈I Ωi at x̄ , then ∀ε > 0 ∃J ∈ J ;

xi ∈ Ωi ∩ Bε(x̄), x∗i ∈ NΩi
(xi) (i ∈ J)∥∥∥∥∥x∗ −

∑
i∈J

x∗i

∥∥∥∥∥ < ε
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Constrained Optimization
Finite Stationarity

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I

fi : X → R∞, fi(x̄) <∞ (i ∈ I ∪ {0}), f0(x̄) = 0

Definition

x̄ is finitely stationary if ∀ε > 0 ∃ρ > 0 and J ∈ J

sup
i∈J∪{0}

fi(x) + ε‖x − x̄‖ > 0 ∀x ∈ Bρ(x̄) \ {x̄}

ε-active indices: Iε(x̄) :=

{
i ∈ I

∣∣∣∣∣ sup
x∈Bε(x̄)

fi(x) ≥ −ε

}
Jε(x̄) := {J ⊂ Iε(x̄)| 0 < |J | <∞}
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Constrained Optimization
Finite Stationarity

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I

fi : X → R∞, fi(x̄) <∞ (i ∈ I ∪ {0}), f0(x̄) = 0

Definition
{fi}i∈I∪{0} is normally uniformly regular at x̄ if ∃α > 0, ε > 0∥∥∥∥∥∥

∑
i∈J∪{0}

x∗i

∥∥∥∥∥∥+
∑

i∈J∪{0}

λi ≥ α
∑

i∈J∪{0}

‖x∗i ‖

∀J ∈ Jε(x̄);
∀(xi , µi) ∈ epi fi ∩ Bε(x̄ , 0), (x∗i ,−λi) ∈ Nepi fi (xi , µi) (i ∈ J ∪ {0})
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Constrained Optimization
Finite Stationarity

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I

fi : X → R∞, fi(x̄) <∞ (i ∈ I ∪ {0}), f0(x̄) = 0

Theorem
Suppose fi , i ∈ I ∪ {0}, are lsc near x̄ and {fi}i∈I∪{0} is normally
uniformly regular at x̄ . If x̄ is finitely stationary, then ∀ε > 0,
∃J ∈ Jε(x̄); xi ∈ Bε(x̄), x∗i ∈ X ∗, λi ≥ 0 (i ∈ J ∪ {0})

fi(xi) ≤ f (x̄) + ε; x∗i ∈ λi∂fi(xi) if λi > 0, x∗i ∈ ∂∞fi(xi) if λi = 0∥∥∥∥∥∥
∑

i∈J∪{0}

x∗i

∥∥∥∥∥∥ < ε and
∑

i∈J∪{0}

λi = 1
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Constrained Optimization
Finite Stationarity

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I

fi : X → R∞, fi(x̄) <∞ (i ∈ I ∪ {0}), f0(x̄) = 0

Corollary

Suppose fi , i ∈ I ∪{0}, are uniformly Lipschitz near x̄ , and {fi}i∈I∪{0}
is normally uniformly regular at x̄ . If x̄ is finitely stationary, then
∀ε > 0, ∃J ∈ Jε(x̄); xi ∈ Bε(x̄), x∗i ∈ ∂fi(xi), λi ≥ 0 (i ∈ J ∪ {0})∥∥∥∥∥∥

∑
i∈J∪{0}

λix
∗
i

∥∥∥∥∥∥ < ε and
∑

i∈J∪{0}

λi = 1
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Constrained Optimization
Finite Stationarity

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I

fi : X → R∞, fi(x̄) <∞ (i ∈ I ∪ {0}), f0(x̄) = 0

Definition

Normal constraint qualification: ∃α > 0, ε > 0∥∥∥∥∥∑
i∈J

x∗i

∥∥∥∥∥ ≥ α
∑
i∈J

λi

∀J ∈ Jε(x̄); (xi , µi) ∈ epi fi ∩ Bε(x̄ , 0), (x∗i ,−λi) ∈ Nepi fi (xi , µi)
(i ∈ J)
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Constrained Optimization
Finite Stationarity

Minimize f0(x) subject to fi(x) ≤ 0, i ∈ I

fi : X → R∞, fi(x̄) <∞ (i ∈ I ∪ {0}), f0(x̄) = 0

Corollary

Suppose fi , i ∈ I ∪ {0}, are uniformly Lipschitz near x̄ , {fi}i∈I∪{0} is
normally uniformly regular at x̄ , and the normal constraint
qualification is satisfied. If x̄ is finitely stationary, then ∀ε > 0
∃J ∈ Jε(x̄); xi ∈ Bε(x̄), x∗i ∈ ∂fi(xi) (i ∈ J ∪ {0}); λi ≥ 0 (i ∈ J)∥∥∥∥∥x∗0 +

∑
i∈J

λix
∗
i

∥∥∥∥∥ < ε
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