Suomeksi
 
 
Publications

​Here you can find the most recent selected publications of the Optimization group.

2018

 

  • V. Emelichev, Y. Nikulin, T-1 Stability Measures for Multicriteria Quadratic Integer Programming Problem of Finding Extremum Solutions. TUCS Technical Reports 1194, 2018.
  • K. Kuzmin, Y. Nikulin, M.M.Mäkelä On necessary and sufficient conditions of stability and quasistability in combinatorial multicriteria optimization // submitted to Control and Cybernetics , 2018.
  • V. Emelichev, Y. Nikulin, Strong stability measures for multicriteria quadratic integer programming problem of finding extremum solutions, Computer Science Journal of Moldova, vol. ? no. 2,  2018, p. ??-??.
  • V. Emelichev, Y. Nikulin and V. Korotkov, Multicriteria investment problem with Savage's risk criteria: theoretical aspects of stability and case study, submitted to Journal of Industrial and Management Optimization, 2018

2017

 

2016
  • T. Linkosaari, T. Urponen, H. Juvonen, M.Mäkelä, Y.Nikulin,Three-dimensional bin packing problem with a stability rejection criterion, ECCOMAS Congress 2016.
  • N. Karmitsa, "Numerical Methods for Large-Scale Nonsmooth Optimization" in "Big Data Optimization: Recent Developments and Challenges". A. Emrouznejad (eds.), Springer, Studies in Big Data Vol. 18, 2016.
  • N. Karmitsa, "Testing Different Nonsmooth Formulations of the Lennard-Jones Potential in Atomic Clustering Problems", Journal of Optimization Theory and Applications, Vol. 171, No. 1, pp. 316-335, 2016. DOI 10.1007/s10957-016-0955-5.
  • N. Karmitsa, "Diagonal discrete gradient bundle method for derivative free nonsmooth optimization". Optimization: A Journal of Mathematical Programming and Operations Research, Vol. 85, No. 8, pp. 1599-1614, 2016. DOI 10.1080/02331934.2016.1171865.
  • N. Karmitsa, A. Bagirov, and S. Taheri: "Limited Memory Bundle Method for Solving Large Clusterwise Linear Regression Problems", TUCS Technical Report, No. 1172, Turku Centre for Computer Science, Turku, 2016.
  • N. Karmitsa, A. Bagirov, and S. Taheri: "MSSC Clustering of Large Data using the Limited Memory Bundle Method", TUCS Technical Report, No. 1164, Turku Centre for Computer Science, Turku, 2016.
  • N. Karmitsa, A. Bagirov, and S. Taheri, "Diagonal Bundle Method for Solving the Minimum Sum-of-Squares Clustering Problems ", TUCS Technical Report, No. 1156, Turku Centre for Computer Science, Turku, 2016.
  • M.M. Mäkelä, N. Karmitsa, O. Wilppu, "Proximal Bundle Method for Nonsmooth and Nonconvex Multiobjective Optimization"  in Mathematical Modeling and Optimization of Complex Structures. T. Tuovinen, S. Repin and P. Neittaanmäki (eds.), Vol. 40 of Computational Methods in Applied Sciences, pp. 191-204, Springer, 2016.
  • Vladimir Emelichev, Vadim Mychkov, Yury Nikulin, Postoptimal Analysis for One Vector Venturesome Investment Problem. TUCS Technical Reports 1153, TUCS, 2016.
  • K. Joki, A. Bagirov, N. Karmitsa and M.M. Mäkelä: A proximal bundle method for nonsmooth DC optimization utilizing nonconvex cutting planes. Journal of Global Optimization, 2016.
2015
  • Kaisa Joki, Adil M. Bagirov, Napsu Karmitsa and Marko M. Mäkelä: New Proximal Bundle Method for Nonsmooth DC Optimization. TUCS Technical Report No. 1130, Turku Centre for Computer Science, Turku, 2015.
  • N. Karmitsa, "Diagonal Bundle Method for Nonsmooth Sparse Optimization", Journal of Optimization Theory and Applications, Vol. 166, No. 3, pp. 889-905, 2015. DOI 10.1007/s10957-014-0666-8.
  • Emelichev V. A., Kuzmin K. G., Nikulin Y. V. Stability in multicriteria MAXCUT problem // Mathematical Programming and Applications: abstracts of the XV National Conference. Ekaterinburg. March 2--6, 2015 / Institute of Mathematics and Mechanics, Ural Branch of the Russian Academy of Sciences.Ekaterinburg. 2015. P. 130--131.
  • Nikulin Y. V, Mäkelä M.M., Wilppu O. Synchronous scalarization approach with application in interactive multicriteria optimization and decision making, In abstract of WebConf 2015, Minsk, Belarus
  • Nikulin Y.V. Kuzmin K.G. Stability Aspects for the Maxcut Problem with Multiple Criteria, ISMP 2015 Pittsburgh, USA
  • V. Korotkov, Y. Nikulin and V. Emelichev, Stability of the bicriteria Boolean investment problem subject to extreme optimism and pessimis criteria, Croational Operational Research Review 6 (2015) 195 -207.

2014
  • Y. Nikulin,Accuracy and stability functions for a problem of minimization a linear form on a set of substitutions, Chapter in Sequencing and Scheduling with Inaccurate Data, Editors Yuri Sotskov and Frank Werner, Nova Science Pub Inc
  • O. Wilppu, N. Karmitsa, M.M. Mäkelä, "New Multiple Subgradient Descent Bundle Method for Nonsmooth Multiobjective Optimization.", , TUCS technical report No 1126, Turku Centre for Computer Science, Turku, 2014.
  • M.M. Mäkelä, N. Karmitsa, O. Wilppu "Multiobjective Proximal Bundle Method for Nonsmooth Optimization", TUCS technical report No 1120, Turku Centre for Computer Science, Turku, 2014.
  • M.M. Mäkelä, V.-P. Eronen, N. Karmitsa, "On Nonsmooth Multiobjective Optimality conditions with Generalized Convexities" in Optimization in Science and Engineering. Th.M. Rassias, C.A. Floudas, and S. Butenko (eds.), pp. 341-366, Springer, 2014.
  • Kuzmin K. G., Nikulin Yu. V. Postoptimal analysis for Emelichev's multicriteria investment problem with Wald's criteria // Problems of Forecasting and State Regulation of Social and Economic Development: abstracts of the XV International Conference. October 23--24, 2014 / The Economy Research Institute of the Ministry of Economy. Minsk. 2014. V. 3. P. 234--237
  • A. Bagirov, N. Karmitsa, M.M. Mäkelä, "Introduction to Nonsmooth Optimization: Theory, Practice and Software." Springer, 2014.

2013

2012

2011

2010

2009

2008

2007

2004

Keywords:
Tags: