in English
Photosynthetic microbes as Blue Biofuture platform

Group members

Yagut Allahverdiyeva-Rinne, Dr., Project Leader
Sergey Kosourov, Dr., Senior Researcher
Fiona Lynch, Dr., Postdoctoral Researcher
Gayathri Murukesan, MSc, Doctoral Student
Mikael Jämsä, MSc, Doctoral Student
Daniel Solymosi, MSc, Doctoral Student
Anita Sanchez Santana, MSc, Doctoral Student

Co-supervised PhD students:

MSc. Martina Jokel
MSc. Henna Mustila
MSc. Tuomas Huokko


Co-supervised PhD students:

Sumathy Shunmugam, PhD thesis completed on 20.04.2012 (Cyanobacteria from the Baltic Sea and Finnish lakes as an energy source and modulators of bioenergetic pathways. Link )
Hannu Leino –PhD thesis completed on 19.12.2014 (Extended hydrogen photoproduction by nitrogen-fixing cyanobacteria. Link )
Maria Ermakova - PhD thesis completed on 13.03.2015 (Oxygen photoreduction in cyanobacteria. Link )
Luca Bersanini, PhD thesis completed on 26.02.2016 (Alternative electron transfer routes involved in photoprotection of cyanobacteria. Link )

Erasmus trainee: Darius Collrad (University of Surrey, UK)
Erasmus Mundus Aurora trainee: Dr. Zinaida Eltsova (Institute of Basic Biological Problems RAS, Pushchino, Russia)

We work within the frames of a Center of Excellence awarded by the Academy of Finland (2014-2019) and a Nordic Center of Excellence (NordAqua) awarded by the NordForsk Bioeconomy program (2017-2022). Current projects are additionally financed by the Novo Nordisk Foundation and Kone Foundation. We are active in collaborating with industry and have an ongoing relationship with Clewer wastewater treatment company (Clewer Oy). We are also open to new opportunities with potential industrial partners (please use contact details above).



Oxygenic photosynthetic microorganisms are able to harness solar energy and polluting CO2 for conversion into useful chemicals. Photosynthesis is the unique process responsible for all biomass in the nature and is thus the fundamental basis for all biorefineries. In working towards a Blue Biofuture, we are active in three distinct, yet related areas of research: (i) basic photosynthesis research on cyanobacteria and microalgae; (ii) the biodiversity of Nordic cyanobacteria and microalgae as a source of fine chemicals and biofuels; and (iii) immobilization for improved light conversion efficiency.


Basic photosynthesis research on cyanobacteria and microalgae
We employ a systems biology approach to study alternative photosynthetic electron transport pathways and understand the molecular regulation mechanisms important under different environmental conditions (e.g. fluctuating light intensities). In order to evaluate the evolutionary importance of these mechanisms we study a model unicellular cyanobacterium, Synechocystis sp. PCC 6803, a model N2-fixing heterocystous cyanobacterium, Anabaena (Nostoc) sp. PCC 7120, and a model green alga, Chlamydomonas reinhardtii. A major research objective is the elucidation of the function of flavodiiron proteins (in collaboration with Prof. Eva-Mari Aro) and cross-talk of photosynthetic and respiratory electron transport chains. Particular attention is given to the specific properties of the electron-transport pathways of heterocysts. Outcomes of our current research will guide future genetic and metabolic engineering efforts to modulate the major energetic pathways in order to avoid ‘wasteful’ electron flow and to channel major electron flux to targeted end products
The biodiversity of Nordic cyanobacteria and microalgae as a source of fine chemicals and biofuels
The abundance and diversity of Nordic cyanobacteria and algae, adapted to low light and low temperature conditions, provides great opportunity for the low energy operation of blue biorefineries. We routinely screen a large Finnish culture collection for cyanobacterial and algal strains demonstrating superior properties suited to the efficient production of lipid-based biofuels, bioH2, high-value industrial compounds and wastewater remediation. The most promising strains are subject to systems biology analysis to better understand cell metabolism and elucidate superior genetic and metabolic traits.
Immobilization for improved light conversion efficiency
A major bottleneck for the employment of aquatic photoautotrophs on an industrial scale is the low light-conversion index responsible for the low yield of desired end-products. We apply immobilization technology for the attachment of cells to mechanically-stable biodegradable matrices in order to increase the ‘light to product’ conversion efficiency and to facilitate microalgae separation and harvest of biomass. We attempting to further improve immobilization using polymeric matrixes for engineering thin-layer cyanobacteria and algal catalysts with targeted function.

We believe that photosynthetic aquatic microorganisms will serve as an efficient feedstock for the profitable and environmentally sound production of high-value compounds, nutraceuticals, and food and feed additives, and will thus be a major contributor to the blue bioeconomy.

Publications relevant to the project

Jamsa, M., Lynch, F., Santana-Sanchez, A., Laaksonen, P., Zaitsev, G., Solovchenko, A., Allahverdiyeva, Y. (2017) Nutrient removal and biodiesel feedstock potential of green alga UHCC00027 grown in municipal wastewater under nordic conditions - Algal Research 26:65-73.   Free article
Volgusheva, A. A., Jokel, M., Allahverdiyeva, Y., Kukarskikh, G. P., Lukashev, E. P., Lambreva, M. D., Krendeleva, T. E. and Antal, T. K. (2017), Comparative analyses of H2 photoproduction in magnesium and sulfur starved Chlamydomonas reinhardtii cultures. Physiol Plantarum. Accepted Author Manuscript.
Alirzayeva*, E.; Neumann*,, G.; Horst*, W.; Allahverdiyeva, Y.; Specht*, A. & Alizade*, V. 2017:  Multiple mechanisms of heavy metal tolerance are differentially expressed in ecotypes of Artemisia fragrans. - ENVIRONMENTAL POLLUTION 220: 1024-1035.   (Epub 2016 Nov 24).
Kosourov, S.;  Murukesan,  G.; Jokela*, J. & Allahverdiyeva, Y. 2016:  Carotenoid biosynthesis in Calothrix sp. 336/3: composition of carotenoids on full medium, during diazotrophic growth and after long-term H2 photoproduction. - PLANT & CELL PHYSIOLOGY 57(11): 2269-2282.  (Epub 2016 Aug 12).
Ermakova, M.; Huokko, T.; Richaud*, P.; Bersanini, L.; Howe*, CJ.; Lea-Smith*, DJ.; Peltier*, G. & Allahverdiyeva, Y. 2016:  Distinguishing the roles of thylakoid respiratory terminal oxidases in the cyanobacterium Synechocystis sp. PCC 6803. - PLANT PHYSIOLOGY 171(2): 1307-1319.   Free article   (Epub 2016 Apr 18).
Mustila, H.; Paananen, P.; Battchikova, N.; Santana-Sánchez, A.; Muth-Pawlak, D.; Hagemann*, M.; Aro, EM: & Allahverdiyeva, Y. 2016:  The flavodiiron protein Flv3 functions as a homo-oligomer during stress acclimation and is distinct from the Flv1/Flv3 hetero-oligomer specific to the O2 photoreduction pathway. -PLANT AND CELL PHYSIOLOGY  57(7): 1468-1483.   Free article   (Epub 2016 Mar 2).
Lynch, F.; Santana-Sánchez, A.; Jämsä, M.; Sivonen*, K.; Aro, EM. & Allahverdiyeva, Y. 2015:  Screening native isolates of cyanobacteria and a green alga for integrated wastewater treatment, biomass accumulation and neutral lipid production. - ALGAL RESEARCH 11: 411-420.   Free article   (Epub 2015 Jun 3).
Jokel, M.; Kosourov, S.; Battchikova, N.; Tsygankov*, AA.; Aro, EM. & Allahverdiyeva, Y. 2015:  Chlamydomonas flavodiiron proteins facilitate acclimation to anoxia during hydrogen production. - PLANT & CELL PHYSIOLOGY 56(8): 1598-1607.   Free article   (Epub 2015 Jun 10).
Allahverdiyeva Y, Isojärvi J, Zhang, P, Aro EM. 2015. Cyanobacterial Oxygenic Photosynthesis is protected by flavodiiron proteins. Life 5:716-743.  Free article  (Epub 2015 Mar 9).
Allahverdiyeva Y, Suorsa M, Tikkanen M, Aro EM. 2015. Photoprotection of photosystems in fluctuating light intensities. J. Exp. Bot. 66:2427-2436. (Epub 2014 Dec 1).
Ermakova M, Battchikova N, Richaud P, Leino H, Kosourov S, Isojarvi J, Peltier G, Flores E, Cournac L, Allahverdiyeva Y, Aro EM. 2014. Heterocyst-specific flavodiiron protein Flv3B enables oxic diazotrophic growth of the filamentous cyanobacterium Anabaena sp. PCC 7120. Proc. Natl. Acad. Sci. 111:11205-11210. Free article  (Epub 2017 Jul 7)
Dang* KV.; Plet*, J.; Tolleter*, D.; Jokel, M.; Cuiné*, S.; Carrier*, P.; Auroy*, P.; Richaud*, P.; Johnson*, X.; Alric*, J.; Allahverdiyeva, Y. & Peltier*, G. 2014:  Combined increases in mitochondrial cooperation and oxygen photoreduction compensate for deficiency in cyclic electron flow in Chlamydomonas reinhardtii. - PLANT CELL 26(7): 3036-3050.   Free article   (Epub 2014 July 2).
Kosourov, S.; Leino, H.; Murukesan, G.; Lynch, F.; Sivonen*, K.; Tsygankov*, AA.; Aro, EM. & Allahverdiyeva, Y. 2014:  Hydrogen photoproduction by immobilized N2-fixing cyanobacteria: Understanding the role of uptake hydrogenase in the long-term process. - APPLIED AND ENVIRONMENTAL MICROBIOLOGY 80(18): 5807-5817.   (Epub 2014 Jul 11).
Leino, H.; Shunmugam, S.; Isojärvi, J.; Oliveira*, P.; Mulo, P.; Saari*, L.; Battchikova, n.; Sivonen*, K.; Lindblad*, P.; Aro, EM. & Allahverdiyeva, Y. 2014:  Characterization of ten H2 producing cyanobacteria isolated from the Baltic Sea and Finnish lakes. - INTERNATIONAL JOURNAL OF HYDROGEN ENERGY 39(17): 8983-8991.   (Epub 2014 Apr 18)
Shunmugam S, Jokela J, Wahlsten M, Battchikova N, ur Rehman A, Vass I, Karonen M, Sinkkonen J, Permi P, Sivonen K, Aro EM, Allahverdiyeva Y. 2014. Secondary metabolite from Nostoc XPORK14A inhibits photosynthesis and growth of Synechocystis PCC 6803. Plant Cell Environ. 37:1371-1381.
Allahverdiyeva Y, Mustila H, Ermakova M, Bersanini L, Richard P, Ajlani G, Batchikova N, Cournac L, Aro EM.  2013. Flavodiiron proteins Flv1 and Flv3 enable cyanobacterial growth and photosynthesis under fluctuating light. Proc. Natl. Acad. Sci. 110:4111-4116.  Free article   (Epub 2013 Feb 19).

Leino H., Kosourov S.N., Saari L., Sivonen K., Tsygankov A.A., Aro EM., Allahverdiyeva Y. Extended H2 photoproduction by N2-fixing cyanobacteria immobilized in thin alginate films, 2012, Int J Hydrogen Energy, 37: 151-161.
Allahverdiyeva Y, Ermakova M, Eisenhut M, Zhang P, Richaud P, Hagemann M, Cournac L, Aro EM. 2011. Interplay between flavodiiron proteins and photorespiration in Synechocystis sp. PCC 6803. J. Biol. Chem. 286:24007-24014.  Free article  (Epub 2011 May 20).

Allahverdiyeva Y., Leino H., Saari L., Fewer D., Shunmugam S., Sivonen K. and Aro EM. Screening for biohydrogen production by cyanobacteria isolated from the Baltic Sea and Finnish lakes, 2010, Int. J. Hydrogen Energy, 35: 1117-1127.

Book chapters

Kosourov S, He M, Allahverdiyeva Y, Seibert M. (2017) Chapter 15. Immobilization of Microalgae as a Tool for Efficient Light Utilization in H2 Production and other Biotechnology Applications. In: M. Seibert, G. Torzillo (Ed.), Microalgal Hydrogen Production: Achievements and Prospectives, The Royal Society of Chemistry, in press

Allahverdiyeva Y, Aro E.M., Kosourov S.N. (2014) Chapter 21. Recent Developments on Cyanobacteria and Green Algae for Biohydrogen Photoproduction and Its Importance in CO2 Reduction. In: Gupta V., Tuohy M., Kubicek C., Saddler J., Xu F. ed., Bioenergy Research: Advances and Applications. pp. 367-382 Elsevier


​Our research is supported by:


Koneen säätiö.jpg 



suomen akatemia.jpg