Generalizing Trade-off Directions in Multiobjective Optimization

Yury Nikulin1, Marko M. Mäkelä1
József Mezei2

1University of Turku
Department of Mathematics

2Åbo Akademi University
Department of Information Technologies

Lisbon
July 14, 2010
Outline

1 Introduction
 - Problem Formulation
 - Main Definitions
 - Main Tools

2 Main Results
 - Convex Case
 - Nonconvex Case

3 Concluding Remarks
Optimality under Multiple Objectives

- Different concepts of optimality in multiobjective optimization
- Various definitions of trade-off
We consider general multiobjective optimization problems of the following form:

\[
\min_{x \in S} \{ f_1(x), f_2(x), \ldots, f_k(x) \},
\]

with the continuous objective functions \(f_i : \mathbb{R}^n \rightarrow \mathbb{R} \) for all \(i \in I_k := \{1, \ldots, k\} \).

The decision vector \(x \) belongs to the nonempty feasible set \(S \subset \mathbb{R}^n \).

Elements of the image of the feasible set \(Z \subset \mathbb{R}^k \) are termed objective vectors and denoted by

\[
z = f(x) = (f_1(x), f_2(x), \ldots, f_k(x))^T.
\]

Additionally, we assume \(f(B(x; \varepsilon)) \) to be open for all \(x \in S \) and \(\varepsilon > 0 \), where \(B(x; \varepsilon) \) is an open ball with radius \(\varepsilon \) and center \(x \).
Efficiency and Weak Pareto Optimality

Weak Pareto Optimality. An objective vector \(z^* \in Z \) is *weakly Pareto optimal* if there does not exist another objective vector \(z \in Z \) such that \(z_i < z_i^* \) for all \(i \in I_k \).

Pareto Optimality or Efficiency. An objective vector \(z^* \in Z \) is *Pareto optimal or efficient* if there does not exist another objective vector \(z \in Z \) such that \(z_i \leq z_i^* \) for all \(i \in I_k \) and \(z_j < z_j^* \) for at least one index \(j \).
The \textit{weakly Pareto optimal set} is

\[GW P(Z) := \left\{ z \in Z \mid (z + \text{int } \mathbb{R}^k_{-}) \cap Z = \emptyset \right\}; \]

the \textit{Pareto optimal set} is

\[GPO(Z) := \left\{ z \in Z \mid (z + \mathbb{R}^k_{-} \setminus \{0\}) \cap Z = \emptyset \right\}. \]
Local Optimality

Definition

The *locally weakly Pareto optimal set* with \(z = f(x) \in Z \) is given as

\[
LWP(Z) = \bigcup_{\delta > 0} \left\{ z \in Z \mid (z + \text{int} \ R_+^k) \cap Z \cap f(B(x; \delta)) = \emptyset \right\}.
\]

The *locally Pareto optimal set* as

\[
LPO(Z) = \bigcup_{\delta > 0} \left\{ z \in Z \mid (z + R_+^k \setminus \{0\}) \cap Z \cap f(B(x; \delta)) = \emptyset \right\}.
\]
Strong Efficiency. An objective vector $z^* \in Z$ is *strongly Pareto optimal* if for all $i \in I_k$ there exists no objective vector $z \in Z$ such that $z_i < z_i^*$ or in other words $z^* \in Z$ optimizes all objectives z_i, $i \in I_k$.

Proper Pareto Optimality. An objective vector $z^* \in Z$ is *properly Pareto optimal* if there exists no objective vector $z \in Z$ such that $z \in C$ for some convex cone C, $\mathbb{R}_+^k \setminus \{0\} \subset \text{int } C$, attached to z^*.

Yury Nikulin, Marko M. Mäkelä, József Mezei

Generalizing Trade-off Directions in Multiobjective Optimization
Strong Efficiency and Proper Pareto Optimality via Cones

Definition

The *strongly efficient set* is

\[GSE(Z) := \left\{ z \in Z \mid (z + (R^k_+)^C) \cap Z = \emptyset \right\}. \]

The *properly Pareto optimal set* is defined as

\[GPP(Z) := \left\{ z \in Z \mid (z + C \setminus \{0\}) \cap Z = \emptyset \right\} \]

for some convex cone \(C \) such that \(R^k_- \setminus \{0\} \subset \text{int} \, C. \)
Local Optimality

Definition

The *locally strongly efficient set* with $z = f(x)$ is defined as

$$LSE(Z) := \bigcup_{\delta > 0} \left\{ z \in Z \mid (z + (\mathbb{R}_+^k)^C) \cap Z \cap f(B(x; \delta)) = \emptyset \right\}.$$

The *locally properly Pareto optimal set* as

$$LPP(Z) = \bigcup_{\delta > 0} \left\{ z \in Z \mid (z + C \setminus \{0\}) \cap Z \cap f(B(x; \delta)) = \emptyset \right\}$$

for some convex cone C such that $\mathbb{R}_-^k \setminus \{0\} \subset \text{int} \ C$.

Outline

- Introduction
- Main Results
- Main Definitions
- Main Tools
- Concluding Remarks

Yury Nikulin, Marko M. Mäkelä, József Mezei

Generalizing Trade-off Directions in Multiobjective Optimization
Contingent and Normal Cones

Definition

The **contingent cone** of a set $Z \subset \mathbb{R}^k$ at $z \in Z$ is defined as

$$K_z(Z) := \{ d \in \mathbb{R}^k \mid \text{there exist } t_j \searrow 0 \text{ and } d_j \to d \text{ such that } z + t_j d_j \in Z \}.$$

Definition

The **normal cone** of Z at $z \in Z$ is the polar cone of the contingent cone, that is,

$$N_z(Z) := K_z(Z)^\circ = \{ y \in \mathbb{R}^k \mid y^T d \leq 0 \text{ for all } d \in K_z(Z) \}.$$
Contingent and Normal Cones

Definition

The *contingent cone* of a set $Z \subset \mathbb{R}^k$ at $z \in Z$ is defined as

$$K_z(Z) := \{d \in \mathbb{R}^k \mid \text{there exist } t_j \downarrow 0 \text{ and } d_j \to d \text{ such that } z + t_j d_j \in Z\}.$$

Definition

The *normal cone* of Z at $z \in Z$ is the polar cone of the contingent cone, that is,

$$N_z(Z) := K_z(Z)^\circ = \{y \in \mathbb{R}^k \mid y^T d \leq 0 \text{ for all } d \in K_z(Z)\}.$$
Contingent cone may lose convexity in nonconvex case

Figure: Nonconvex contingent cone $K_z(Z)$.
The cone of globally feasible directions of a set $Z \subset \mathbb{R}^k$ at $z \in Z$ is denoted by

$$D_z(Z) := \{d \in \mathbb{R}^k | \text{ there exists } t > 0 \text{ such that } z + td \in Z\}.$$

The set Z is called regular at $z \in Z$ if $D_z(Z) = K_z(Z)$.
Definition

The cone of globally feasible directions of a set $Z \subset \mathbb{R}^k$ at $z \in Z$ is denoted by

$$D_z(Z) := \{d \in \mathbb{R}^k \mid \text{there exists } t > 0 \text{ such that } z + td \in Z\}.$$

Definition

The set Z is called regular at $z \in Z$ if $D_z(Z) = K_z(Z)$.
The cone of locally feasible directions of a set \(Z \subset \mathbb{R}^k \) at \(z \in Z \) is denoted by

\[
F_z(Z) = \{ d \in \mathbb{R}^k \mid \text{there exists } t > 0 \text{ such that } z + \tau d \in Z \text{ for all } \tau \in (0, t]\}.
\]

The set \(Z \) is called locally regular at \(z \in Z \) if \(F_z(Z) = K_z(Z) \).
The cone of locally feasible directions of a set $Z \subset \mathbb{R}^k$ at $z \in Z$ is denoted by

$$F_z(Z) = \{ d \in \mathbb{R}^k \mid \text{there exists } t > 0 \text{ such that } z + \tau d \in Z \text{ for all } \tau \in (0, t] \}.$$

The set Z is called locally regular at $z \in Z$ if $F_z(Z) = K_z(Z)$.

Yury Nikulin, Marko M. Mäkelä, József Mezei
Generalizing Trade-off Directions in Multiobjective Optimization
The **tangent cone** of a set \(Z \subset \mathbb{R}^k \) at \(z \in Z \) is given by the formula

\[
T_z(Z) = \{ d \in \mathbb{R}^k \mid \text{for all } t_j \downarrow 0 \text{ and } z_j \to z \text{ with } z_j \in Z, \quad \text{there exists } d_j \to d \text{ with } z_j + t_j d_j \in Z \}.
\]

The set \(Z \) is called **tangentially regular** at \(z \in Z \) if \(T_z(Z) = K_z(Z) \).
Tangent Cone and Tangent Regularity

Definition

The *tangent cone* of a set $Z \subset \mathbb{R}^k$ at $z \in Z$ is given by the formula

$$T_z(Z) = \{ d \in \mathbb{R}^k \mid$$

for all $t_j \searrow 0$ and $z_j \to z$ with $z_j \in Z$,

there exists $d_j \to d$ with $z_j + t_j d_j \in Z \}.$

Definition

The set Z is called *tangentially regular* at $z \in Z$ if $T_z(Z) = K_z(Z)$.
Lemma

For the cones $K_z(Z)$, $D_z(Z)$, $T_z(Z)$ and $F_z(Z)$ we have the following

a) $K_z(Z)$ and $T_z(Z)$ are closed and $T_z(Z)$ is convex.

b) $0 \in K_z(Z) \cap D_z(Z) \cap T_z(Z) \cap F_z(Z)$.

c) $Z \subset z + D_z(Z)$.

d) $\text{cl } F_z(Z) \subset K_z(Z) \subset \text{cl } D_z(Z)$.

e) $T_z(Z) \subset K_z(Z)$.

f) If Z is convex, then $\text{cl } F_z(Z) = T_z(Z) = K_z(Z) = \text{cl } D_z(Z)$. Moreover $F_z(Z) = D_z(Z)$.
Interconnection between various types of regularity

\[
\text{cl } D_z(Z) = K_z(Z) \quad \Leftarrow \quad \text{Regularity}
\]

\[\uparrow\]

\[\text{Convexity} \quad \Rightarrow \quad \text{Tangent Regularity}\]

\[\downarrow\]

\[
\text{cl } F_z(Z) = K_z(Z) \quad \Leftarrow \quad \text{Local Regularity}
\]

Yury Nikulin, Marko M. Mäkelä, József Mezei

Generalizing Trade-off Directions in Multiobjective Optimization
The set of generalized *trade-off directions* is defined as:
- in case of *weak Pareto optimality*:
 \[GW(Z) := GW \cdot P(K_Z(Z)) ; \]
- in case of *Pareto optimality (efficiency)*:
 \[GP(Z) := G \cdot P(O)(K_Z(Z)) ; \]
- in case of *strong efficiency*:
 \[GS(Z) := G \cdot S(E)(K_Z(Z)) . \]
Collection of the relationships in convex case with proper Pareto optimality

\[D_z(Z) \cap \mathbb{R}_+^k = D_z(Z) \]
\[z \in GSE(Z) \ \Leftrightarrow \ K_z(Z) \cap \mathbb{R}_+^k = K_z(Z) \]
\[z \in GPP(Z) \ \Leftrightarrow \ K_z(Z) \cap \mathbb{R}_-^k \setminus \{0\} = \emptyset \]
\[z \in GPO(Z) \ \Leftrightarrow \ D_z(Z) \cap \mathbb{R}_-^k \setminus \{0\} = \emptyset \]
\[z \in GWP(Z) \ \Leftrightarrow \ D_z(Z) \cap \text{int} \ \mathbb{R}_-^k = \emptyset \]

* - tangent regularity, ** - local regularity, *** - regularity
Collection of the relationships in nonconvex case with proper Pareto optimality

\[z \in LSE(Z) \implies K_z(Z) \cap \mathbb{R}_+^k = K_z(Z) \]
\[\downarrow \]
\[z \in LPP(Z) \iff K_z(Z) \cap \mathbb{R}_-^k \setminus \{0\} = \emptyset \]
\[\Downarrow^{**} \]
\[z \in LPO(Z) \iff F_z(Z) \cap \mathbb{R}_-^k \setminus \{0\} = \emptyset \]
\[\downarrow \]
\[z \in LW P(Z) \implies K_z(Z) \cap \text{int } \mathbb{R}_-^k = \emptyset \]

\[* \iff N_z(Z) \cap \mathbb{R}_-^k = \mathbb{R}_-^k \]
\[\Downarrow_* \iff G_S(Z) = \{0\} \]
\[* \iff N_z(Z) \cap \text{int } \mathbb{R}_-^k \neq \emptyset \]
\[\Downarrow_* \iff G_P(Z) \neq \emptyset \]
\[** \iff N_z(Z) \cap \text{int } \mathbb{R}_-^k \neq \emptyset \]
\[\Downarrow_* \iff G_P(Z) \neq \emptyset \]
\[** \iff N_z(Z) \cap \mathbb{R}_-^k \setminus \{0\} \neq \emptyset \]
\[\Downarrow_* \iff G_W(Z) \neq \emptyset \]

* - tangent regularity, ** - local regularity, *** - regularity
Characterization

Theorem

If $Z = z + C$, where C is a closed cone, then

$$GPP(Z) = LPP(Z) = LPO(Z) = GPO(Z).$$
Outline

1 Introduction
 • Problem Formulation
 • Main Definitions
 • Main Tools

2 Main Results
 • Convex Case
 • Nonconvex Case

3 Concluding Remarks
Open Problems and Future Research

- To study problems with some nice properties close to convexity (e.g. with invex objective functions)
- To consider various generalized optimality principles which are given by means of either some ordering cone or parameterization
- How to exploit trade-off information in interactive methods?

Thank you for your time and interest!