
Time: 9th of February, 15:00
Place: Dentalia auditorium (Arje Scheinin lecture hall)

Coffee, tea and sandwiches will be served.

Manuel Tena-Sempere (b. 1969), MD, PhD, is Professor of Physiology at the University of Córdoba, Spain

His expertise lies in Reproductive and Metabolic Endocrinology, with attention to the neuroendocrine regulation of the reproductive axis, and in particular to the neurohormonal and molecular mechanisms responsible for the control of puberty and fertility in mammals. In addition, Tena-Sempere’s work has allowed the characterization of novel signals involved in the integral control of energy balance and reproduction, and their mechanisms of action, with the ultimate aim of understanding the basis for alterations in puberty onset and fertility linked to severe disturbances of body energy/metabolic status, from obesity to anorexia and cachexia. Tena-Sempere and colleagues have significantly contributed to the characterization of the physiological roles of kisspeptins and Gpr54 in the control of key aspects of reproductive maturation and function. In addition, Tena-Sempere’s group has documented the reproductive effects and mechanism of action of different signals primarily involved in energy homeostasis, and has recently undertaken analyses of the roles of microRNA regulatory pathways, and key cellular energy sensors, such as mTOR, AMPK and Sirt1, in the control of puberty onset and gonadal physiology.

Selected publications:

Physiological roles of gonadotropin-inhibitory hormone signaling in the control of mammalian reproductive axis: studies in the NPFF1 receptor null mouse.

Obesity-induced hypogonadism in the male: premature reproductivenuroendocrine senescence and contribution of Kiss1-mediated mechanisms.

Changes in hypothalamic expression of the Lin28/let-7 system and related microRNAs during postnatal maturation and after experimental manipulations of puberty.

Role of neurokinin B in the control of female puberty and its modulation by metabolic status.

Kisspeptin signaling is indispensable for neurokinin B, but not glutamate, stimulation of gonadotropin secretion in mice.

Kisspeptins and reproduction: physiological roles and regulatory mechanisms.
Pinilla L, Aguilar E, Dieguez C, Millar RP, Tena-Sempere M.

The anorexigenic neuropeptide, nesfatin-1, is indispensable for normal puberty onset in the female rat.