MediCity Research Laboratory


We provide laboratory, infrastructure, and office space for altogether about 100 scientists and technicians. Our basic goal is to create a stimulating research and training environment for our researchers and produce high-quality research in biomedicine and translational medicine. We offer multicultural working environment as many of our researchers and staff come from all over the world. We are part of the highly international Biocity community (watch the introduction video).

One of Medicity’s central expertise is in imaging including cell, tissue, and live animal imaging. As examples of this, Medicity has been a key player in setting up an ultramodern multiphoton microscope, small animal PET, and IVIS imaging systems. In addition, Medicity extensively contributes to Turku Bioimaging and to the animal facility infrastructure. The areas of research span from the basic research up to clinically-oriented projects. The work performed in Medicity is recognized both nationally and internationally as Medicity houses a group belonging to the Center of Excellence in Translational Cancer Biology and two of the Professors have received Anders Jahre Senior Prizes (the biggest medical prize in Scandinavia). Research groups based at Medicity have a great chance at working closely with Turku Bisocience Centre, sharing laboratory equipment and space.

Contact Information

Medicity's Director

Marko Salmi

Visiting Address

Tykistökatu 6A
Biocity, 4th floor
20520 Turku


Katri Kulmala

MediCity's Intranet page (requires sing-in)

MediCity on Social Media


Internships and open positions


A research grant for up to 9 months is available for applicants at Medicity Research Laboratory at the University of Turku starting in January 2023.

This grant is part of a project investigating the role of Plvap in lymph node stromal cells and the conduit structure in regulating antigen transport and the immune response. The applicant must be a student at the University of Turku or Åbo Akademi from a relevant field. The applicant should have good knowledge of lymph node biology literature as well as the protein of interest, Plasmalemmal vesicle-associated protein, Plvap. Moreover, the applicant should have substantial prior experience of working with mouse models (including performing s.c. injections, harvesting lymphoid tissues) and the other relevant methodology utilized in the project (lymph node preparations, immunofluorescence staining, confocal imaging and analysis of tissue sections, preparation of samples for flow cytometry and analysis of stromal cells). The grant is 1500-2300 €/month depending on the degree and experience of the applicant.

Application period 21th November – 4th December 2022

Please submit your application online via link:

Please attach a CV, possible publication list and a motivational letter to the application.

Other opportunities



Several researchers and research groups at Medicity are participating in InFlames Flagship.

The InFLAMES Flagship (Innovation Ecosystem based on the Immune System) is a joint effort of University of Turku and Åbo Akademi University aiming at being an internationally recognized, top-level, immunological research and development cluster which will be globally attractive both for the researchers and business partners.

InFLAMES website

InFLAMES Twitter

InFLAMES media bank

Research Groups

Elenius Klaus: ​Signaling of Receptor Tyrosine Kinases in Cancer and Development

Principal Investigator

Klaus Elenius
Professor of Medical Biochemistry,
Faculty of Medicine, University of Turku
MediCity Research Laboratories and Turku Center for Biotechnology
University of Turku and Åbo Akademi University
Cancer Research Laboratories, FICAN West

klaus.elenius [at]

Description of Research

Our goal is to understand how receptor tyrosine kinases (RTK) regulate the pathogenesis of human diseases, such as cancer. This information is needed for the development of molecularly targeted therapies. To recognize aberrations of RTK signaling in diseased tissue our laboratory also works on the molecular mechanism by which RTKs control normal processes, such as embryonic development. The work mainly focuses on the ErbB family of RTKs. Our laboratory has contributed to the field by e.g. by characterizing novel RTK signaling mechanisms, by identifying novel ErbB4 isoforms, and by determining the role of ErbBs and their ligands in angiogenesis.

Current Research Topics

•    Screens for predictive RTK mutations
•    Novel RTK signaling mechanisms
•    Development of preclinical models for development novel RTK inhibitors
•    Sequencing of RTK inhibitor drug administration with cytotoxic agents
•    In vitro “basket trials” with ErbB inhibitor drugs
•    RTK signaling in angiogenesis and cardiovascular diseases
•    RTKs in pediatric malignancies
•    Biological role of novel ErbB4 isoforms in diseases and development

Group's Website

Grönroos Tove: Imaging of tumor microenvironment

Principal Investigator

Tove Grönroos

Senior Researcher, Turku PET Centre (University of Turku)

Adjunct Professor, Dept. Clinical Medicine (University of Turku)

tovgro [at]

Description of Research

Our translational research focuses on evaluating and validating PET tracers for imaging the tumor microenvironment. We are especially interested in approaches for determining the level of radioresistance in solid tumors that affect radiotherapy treatment outcomes in cancer patients. Such tracers can be utilized for treatment planning and follow-up purposes in clinical settings. Another objective is to re-evaluate some existing tracers for their possible use as cancer imaging tools or to measure changes in cancer-dependent metabolism pathways on a whole-body level, which might affect treatment outcomes. We combine PET technology with state-of-the-art technologies for molecular biology utilizing cell lines, tumor models, and patient-derived samples. 

Preclinical PET website

Turku PET Centre website

Heino Jyrki: Structure and Function of Collagen Receptor Integrins

Principal Investigator

Jyrki Heino
Scientific Director, BioCity Turku (BioCity Turku)
Professor, Biochemistry (Department of Biochemistry)
jyrki.heino [at]

Description of Research

Our research group is studying the structure¬–function relationship of the collagen receptor integrins. The most important methods used include the production of recombinant protein domains, functional assays and mutations of the domains, bioinformatics as well as the expression and analysis of the full-length receptor proteins on cell surface. This has lead to a project aimed at development of small molecular inhibitors for collagen receptors. 
In addition to the structural work we are also interested in integrin signaling, especially atypical signaling mechanisms, including low avidity integrin–ligand interaction and signaling by nonactivated integrins. Most recently, we have studied the role of collagen receptor signaling in prostate cancer and the consequences of post-translational modifications, such as citrullination, of the integrin ligands in inflammation In these experiments we use the general methods of molecular cell biology, imaging by confocal microscopy and proteomics. In a separate project we have developed new software for quantitative bioimaging (BioImageXD).

Group Members

Jarmo Käpylä, Senior Scientist, Ph.D., Docent

Pekka Rappu, Postdoctoral Researcher

Johanna Jokinen, Postdoctoral Researcher

Elina Siljamäki, Postdoctoral Researcher

Anna-Brita Puranen, Doctoral Candidates

Marjaana Ojalill, Doctoral Candidates

Salli Keinänen, Doctoral Candidates

Maria Tuominen, Laboratory Technician

Noora Virtanen, Undergraduate Student

Ville Jokinen, Undergraduate Student

Helin Jatta: Kinetic modeling of radiotracers in preclinical PET research

Principal Investigator

Jatta Helin

PhD, Manager of Preclinical in vivo PET Imaging

Preclinical Imaging Unit, Turku PET Centre (University of Turku)

jatta.helin [at]

Description of Research

The main goal of our research is to provide quantitative modeling tools that enable kinetic analyses of animal PET imaging data. Tracer kinetic models can be exploited to measure blood flow, membrane transport, metabolism, and ligand-receptor interactions noninvasively and quantitatively in various animal disease models tailored for metabolic disorders, and neurodegenerative and neuropsychiatric diseases. Ongoing projects aim at translating preclinically achieved data into human PET imaging protocols to be used in research and clinical settings.

Preclinical PET unit website

Turku PET Centre website

Hollmen Maija: Tumor Immunology and Immunotherapy

Principal Investigator

Maija Hollmen
Academy Research Fellow, Department of Clinical Medicine (Department of Clinical Medicine),
Adjunct Professor, MediCity Research Laboratory (Faculty of Medicine)
maijal [at]

Description of Research

Our research exploits a unique scavenger receptor Clever-1, expressed on a subpopulation of immunosuppressive macrophages, to alleviate tumor related inflammation and develop Clever-1 as a companion therapeutic, diagnostic, and prognostic biomarker to treat and identify patients under immunosuppression. This involves the use of in vivo tumor models and sophisticated immunological assays with cutting-edge technology and state-of-the-art imaging combined with fresh human cancer patient material to elucidate the function of Clever-1 in controlling macrophage mediated local and systemic immune responses. Our results potentially have a high impact in understanding the mechanism of macrophage-mediated immunosuppression in cancer and promoting anti-Clever-1 immunotherapy into clinical trials where it may have benefits in comparison with currently available immune activating drugs.

Group's website / Group's Twitter

Ilonen Jorma, Lempainen Johanna: Immunogenetics of Autoimmune Diseases

Principal Investigators

Jorma Ilonen
Professor, Institute of Biomedicine (Institute of Biomedicine)
jsilonen [at]

Johanna Lempainen
Department of Pediatrics, Institute of Clinical Medicine,
University of TurkuUnit for Rare Diseases,
Turku University Hospital
nojoaa [at]

Description of Research

These diseases result from interaction between genetic and environmental factors. The single most important gene region regulating immune response is the (MHC) major histocompatibility complex, in humans the HLA gene complex. Polymorphisms within genes in this region are largely responsible for the genetic susceptibility to many autoimmune diseases including type 1 diabetes, celiac disease, ankylosing spondylitis, rheumatoid arthritis and multiple sclerosis.

We have performed genetic studies in the series of the Finnish Pediatric Diabetes Register and genetic screening for disease susceptibility for recruitment of subjects to several type 1 diabetes associated follow-up projects including DIPP, TRIGR, PRODIA, FINDIA, DIABIMMUNE and TEDDY where children at genetic risk have been followed-up in attempt to identify environmental risk factors and understand pathogenetic mechanisms responsible for destruction of pancreatic ß-cells.

Results based on definition of both HLA and non-HLA gene polymorphisms as well as clinical characteristics suggest heterogeneity in pathogenetic mechanisms of type 1 diabetes and different interactions between genetic and environmental factors in various phases of the autoimmune process leading to clinical disease. 

Many of the mentioned studies have included trials attempting to prevent clinical type 1 diabetes either before the appearance of diabetes associated autoimmunity (primary prevention) or after appearance of diabetes associated autoantibodies (secondary prevention).

Group Members

Johanna Lempainen, Senior Researcher

Antti-Pekka Laine, Senior Researcher,

Minna Kiviniemi, Senior Researcher

Terhi Laakso, Laboratory Technician

Piia Nurmi, Laboratory Technician

Anne Suominen, Laboratory Technician

Sirpa Pahkuri, Doctoral Student

Milla Valta, Doctoral Student

Jalkanen Sirpa: Cell Trafficking in Cancer and Inflammation

Principal Investigator

Sirpa Jalkanen
Professor, Academician
Institute of Biomedicine

sirpa.jalkanen [at]

Description of Research

The overall goal of our research is to elucidate the mechanisms regulating the traffic of leukocytes and cancer cells in the body. Harmful leukocyte migration into the joints in rheumatoid arthritis and into the pancreas in diabetes are examples of diseases where leukocytes cause extensive destruction. These inflammatory diseases can be cured by inhibiting leukocyte trafficking. Also, metastasising malignant cells often use the same mechanisms as leukocytes when extravasating from blood to different organs or migrating via the lymphatics into distant sites. The results obtained can be utilized when new types of drugs are developed to treat harmful inflammations and cancer.

Group's website

Li Jianwei: Molecular Systems Engineering

Principal Investigator

Jianwei Li
Senior Research Fellow, MediCity, PhD, Group Leader [at]

Description of Research

Molecular Systems Engineering is an emerging field by understanding the fundementals of molecular properties and dynamics in synthetic complex systems, and exploring sophisticated functions for advanced applications in biomedicine, materials and energy. Our laboratory uses the tools of dynamic combinatorial chemistry (DCC), supramolecular chemistry and computer chemistry to fabricate the framework of complex chemical systems, investigates the self-assembly in such systems and uncovers the working principles at molecular level behind them. We have learned that self-assembly can not only direct the formation of beautiful and intriguing structures i.e. catenanes and “Russian-doll”-like supramolecular architectures, but also promote the molecules to make copies of themselves as the living matters in nature. Currently we are trying to extend the board of DCC into the fields of materials science, enzymology and biology by three lines of research: 1) dynamic combinatorial biomaterials for controlling cell behaviors; 2) enzyme-directed DCC; and 3) DCC in vivo.

Group's website

Kurppa Kari: Cancer Drug Resistance

​​​Principal Investigator

Kari J. Kurppa
Senior Researcher, Institute of Biomedicine

Description of Research

Our aim is to understand the means cancer cells use to develop resistance to cancer therapies. Our special focus are the mechanisms that enable the establishment of minimal residual disease, or govern the maintenance of residual tumors following targeted cancer therapy. The overarching goal of our research is to develop rational combination strategies that will extend the long-term efficacy of clinically used cancer therapies.

While targeted therapy has transformed the treatment of cancer, the long-term efficacy of these strategies is hampered by acquired drug resistance. In many cases, clinical drug resistance is preceded by minimal residual disease (MRD) state, where residual tumors stay dormant for an extended period of time. Emerging evidence indicates that the establishment of MRD is mainly regulated by non-genetic mechanisms, as cancer cells adapt to treatment by acquiring new phenotypic states that no longer depend on the targeted oncogene. These slow-cycling drug tolerant cells can regain proliferative state upon drug withdrawal or acquisition of additional resistance mechanisms, and as such serve as a reservoir of dormant cells capable of re-initiating the growth of a drug resistant tumor. Understanding the mechanisms underlying the establishment or maintenance of minimal residual disease would enable the development of rational combination strategies aimed to prevent or limit residual disease, leading to prolonged survival of cancer patients.

Group's website

Mattila Pieta: ​Lymphocyte Activation Lab

Principal Investigator

Pieta Mattila

InFLAMES Group Leader, Adjunct Professor, Institute of Biomedicine
pieta.mattila [at]

Description of Research

We investigate the regulation of B lymphocyte activation that mounts specific and highly effective antibody responses against pathogens. However, if lymphocyte activation is defected, we face pathological conditions such as autoimmunity or lymphoma. In our research, we integrate advanced light microscopy and proteomic approaches with cellular and in vivo models, to gain novel understanding on the cell biological phenomena of B cell activation and immune responses.

Group's website / Twitter

Mildner Alexander: Macrophage Biology

Description coming soon

Nakamura Miho: Engineering of Bone to Prevent Osteoporosis

Principal Investigator

Miho Nakamura
Adjunct Professor, Department of Clinical Medicine, Senior Researcher at TCSM, Institute of Biomedicine

Description of Research

Main goal of our research is to find a solution for bone diseases in elderly population, such as osteoarthritis and osteoporosis. Our research is aiming at multidisciplinary collaborations between medicine, cell biology and materials science.

My current research interest includes:

  • Bio-inspired biomaterials to enhance bone regeneration through the manipulation of bone cells (osteoblasts, osteocytes and osteoclasts)
  • New parameters for the evaluation of bone quality using knowledge of materials science
  • Mechanism of osteolysis in aseptic loosening
  • Engineering of bone to prevent osteoporosis

Keywords: Biomaterials, Tissue Engineering, Bone regeneration, Osteoblasts, Osteocytes, Osteoclasts, Osteolysis

Group members

Uruj Sarwar, Doctoral Candidate

Jorgan Sobrepena, Master Student

Leire Bergara Muguruza, Undergraduate Student

We are looking for students (undergraduates, masters, Ph.D. candidates all welcome)! Please feel free to contact/ visit us.

Selected Publications

Tuukkanen J, Nakamura M. Hydroxyapatite as a nanomaterial for tissue engineering and drug therapy. Curr Pharm Design, 2017: 23(26), 3786-3793.

Nakamura M, Hori N, Ando H, Namba S, Toyama T, Nishimiya N, Yamashita K. Surface Free Energy Predominates in Cell Adhesion to Hydroxyapatite through Wettability. Mater Sci Eng C 2016: 62, 283-292.

Nakamura M, Hiratai R, Hentunen T, Salonen J, Yamashita K. Hydroxyapatite with High Carbonate Substitutions Promotes Osteoclast Resorption through Osteocyte-like Cells. ACS Biomater Sci Eng 2016: 2 (2), 259-267.

Nakamura M, Hentunen T, Salonen J, Nagai A, Yamashita K. Characterization of bone mineral-resembling biomaterials for optimizing human osteoclast differentiation and resorption. J Biomed Mater Res A, 2013: 101A (11), 3141-3151.

Nakamura M, Soya T, Hiratai R, Nagai A, Hashimoto K, Morita I, Yamashita K. Endothelial cell migration and morphogenesis on silk fibroin scaffolds including hydroxyapatite electret. J Biomed Mater Res A 2012: 100A, 969-977.

Naucler Cecilia

Description coming soon

Picon Francisco Lopez: Preclinical Neuroimaging

Principal Investigator

Francisco Lopez Picon

Adjunct Professor, Turku PET Centre

francisco.lopez [at]

Description of Research

We work in the development and characterization of novel positron emission tomography (PET) radiotracers to investigate disease relevant targets for neurodegenerative, neuroinflammatory and neuropsychiatric diseases. We have special interest in engineering antibodies that are able to cross the blood brain barrier and use them as PET radiotracer to image brain targets (ImmunoPET approach).  Furthermore, we used relevant disease models of neurodegeneration and neuroinflammation in conjunction with the PET radiotracers to investigate disease progression, and perform longitudinal pharmacological intervention studies.

Preclinical PET Unit - Turku PET Centre

Salmi Marko: Leukocyte Traffic and the Immune Response

Principal Investigator

Marko Salmi, MD, PhD
Professor of Molecular Medicine,
Medicity Research Laboratory

Tel: +358-50-3385678

Description of Research

Leukocyte migration from the blood and lymph into tissues is critical for generation of normal immune responses. Abnormal leukocyte traffic contributes to the pathogenesis of all inflammatory diseases and several other diseases, such as cancer. We study the molecular mechanisms and functional implications of leukocyte migration in the body. We have identified several new adhesion molecules (e.g. vascular adhesion protein-1 (VAP-1), CD73, stabilin-1, plasmalemma vesicle associated protein (Plvap)) on blood and lymphatic vessels and leukocytes, which mediate different steps of leukocyte extravasation from the vessels.

We have also studied the therapeutic value of modulating the function of these and other adhesion receptors in inflammation and cancer. We also elucidate the differentiation pathways of monocytes/macrophages by studying the role of the developmental origin and tissue niche for their plasticity and functions. In addition, we are interested in defining the routes by which antigens enter the lymph node parenchyma via the lymphatic vasculature during the triggering of immune responses. As a separate line of research, we have analyzed the value of adhesion molecules and cytokines as biomarkers of disease in population and patient cohorts.

Group's website




Takeda Akira: Immune and structural cell interaction in health and disease

Principal Investigator

Akira Takeda, PhD
Academy Research Fellow,
MediCity Research Laboratory,
InFLAMES flagship

Tel. +358 29 450 4383

Twitter @akirataked

Description of Research

Although immune cells play a critical role in human diseases such as infection and cancer, structural cells including endothelial and stromal cells are also crucial for maintaining the function of the immune cells. Recent single-cell technologies showed multiple heterogenous subsets in structural cells that have not been considered before. The aim of our group is (1) to find unrecognized heterogeneous structural cell subsets in human organs including lymphoid organs and tumors using single-cell technologies, and (2) to find the new molecular mechanism between heterogeneous structural cells and immune cells in health and disease.

Group's website

Zavialov Anton: Joint Biotechnology Laboratory

Principal Investigator

Anton Zavialov
Senior Research Fellow, Joint Biotechnology Laboratory (JBL)
anton.zavialov [at]

Description of Research

We work in the field of structural biology and structure-based drug design. Our main methods are x-ray crystallography and cryo-electron microscopy. The main focus of our research is the unraveling of molecular mechanisms governing the interplay between microbial pathogens and their hosts, and the exploitation of these finding in medicine. We are particularly interested in host-pathogen interactions during the early steps of infection: bacterial attachment and biofilm formation mediated by fimbrial adhesins and host tissue invasion mediated by the Type III secretion system. Blocking these steps could prevent infections caused by antibiotic-resistant pathogens. Another line of our research explores the intricate cell signaling mechanism of the novel growth factor-enzyme, adenosine deaminase type 2 (ADA2). This study paves the way for the development of novel means to treat blood cancers and vascular disorders, including a genetic disease called deficiency of ADA2 (DADA2). In addition, we develop a novel ADA-based immuno-oncological therapy of advanced cancers.

Group Members

Minna Tuittila, Postdoctoral Researcher

Sari Paavilainen, Senior Researcher

Henri Malmi, Doctoral Candidate

Maksym Skaldin, Doctoral Candidate

Vladimir Zav’yalov, Visiting Professor

Selected publications

Skaldin M, Tuittila M, Zavialov And. V & Zavialov Ant. V (2018) Secreted bacterial adenosine deaminase is an evolutionary precursor of adenosine deaminase growth factor. Molecular Biology and Evolution, 35:2851-2861.

Pakharukova N, McKenna S, Tuittila M, Paavilainen S, Parilova O., Malmi H, Matthews S. & Zavialov AV (2018) Archaic and alternative chaperones preserve pilin folding energy by providing incomplete structural information. Journal of Biological Chemistry, 293(44):17070-17080.

Pakharukova N, Tuittila M, Paavilainen S, Malmi H, Parilova O, Teneberg S, Knight S & Zavialov AV‡ (2018) Structural basis for Acinetobacter baumannii biofilm formation. Proc Natl Acad Sci U S A 115, 5558-5563

Gurung J, Amer A, Francis MK, Costa TRD, Chen S, Zavialov AV & Francis MS (2018) Heterologous Complementation Studies With the YscX and YscY Protein Families Reveals a Specificity for Yersinia pseudotuberculosis Type III Secretion. Frontiers in cellular and infection microbiology 8, 80.

Pakharukova N, Roy SP, Tuttila MT, Paavilanen S, Ingars A-K, Skaldin M, Lamminmäki U, Härt T, Teneberg S. & Zavialov AV (2016). Structural basis for Myf and Psa fimbriae-mediated tropism of pathogenic strains of Yersinia for host tissues. Molecular Microbiology, 102, 593–610.

Pakharukova N., Garnett G, Tuittila MT, Paavilainen S., Diallo M, Xu Y., Matthews S. and Zavialov AV (2015) Structural insight into archaic and alternative chaperone-usher pathways reveals non-classical mechanism of pilus biogenesis. PLoS Pathogens, 11:e1005269.

Amer A, Gurung J, Costa T, Zavialov AV, Forsberg Å  & Francis M (2015) YopN and TyeA hydrophobic contacts required for regulating Ysc-Yop type III secretion activity by Yersinia pseudotuberculosis. Frontiers in cellular and infection microbiology, 6:66.

Berry A, Yang Y, Pakharukova N, Garnett J, Lee W, Cota E, Marchant J, Roy S, Tuittila M, Liu B, Inman K, Ruiz-Perez F, Mandomando I, Nataro J, Zavialov AV and Matthews S (2014) Structural insight into host recognition by aggregative adherence fimbriae of enteroaggregative Escherichia coli. PLoS Pathogens, 10, e1004404

Virtanen Kirsi: Human brown adipose tissue in health and in metabolic disorders

Principal Investigator

Kirsi Virtanen

Associate Professor, Turku PET Centre (University of Turku and Turku University Hospital)

kianvi [at]

Description of Research

The main focus of our research is to understand the function of human brown adipose tissue in health and in metabolic disorders. Current projects are focused on ascertaining the crosstalk between the gut microbiota/products and the immune system with brown adipose tissue function in humans.

This project functions under the framework of the INFLAMES flagship, funded by the Academy of Finland, and aims to: i) ascertain how the infiltrated immune cells within brown adipose tissue modulate its function, and ii) ascertain the mechanisms by which an inflammatory environment may induce brown adipose tissue dysfunction.

Group's website

Group's Twitter

Group Leaders

Latest Pubications