Väitös (astrofysiikka): MSc Vladislav Loktev

Aika

23.5.2025 klo 12.00 - 16.00
MSc Vladislav Loktev esittää väitöskirjansa ”Analytical techniques for X-ray polarization studies of rapidly rotating neutron stars and black holes” julkisesti tarkastettavaksi Turun yliopistossa perjantaina 23.5.2025 klo 12.00 (Turun yliopisto, Quantum, Auditorio, Vesilinnantie 5, Turku).

Yleisön on mahdollista osallistua väitökseen myös etäyhteyden kautta: https://utu.zoom.us/j/69179608394 (meeting ID: 691 7960 8394, pääsykoodi: 751886, kopioi linkki selaimeen).

Vastaväittäjänä toimii tohtori Benoît Cerutti (Grenoble Alpes -yliopisto, Ranska) ja kustoksena professori Juri Poutanen (Turun yliopisto). Tilaisuus on englanninkielinen. Väitöksen alana on astrofysiikka.

Väitöskirja yliopiston julkaisuarkistossa: https://www.utupub.fi/handle/10024/180646 (kopioi linkki selaimeen).

***

Tiivistelmä väitöstutkimuksesta:

When stars much heavier than our Sun reach the end of their lives, they turn into wild places beyond what our eyes can see and brains can imagine. Some collapse into neutron stars - super-dense city-sized spheres of mostly neutrons condensed into exotic states of matter. Some implode into black holes, gravity is so strong that the space-time is twisted, not even light can pass from within. These strange objects often end up in binary systems, pulling in material from a neighboring star and shine in high-energy X-rays as they do so.

My research looks at what those X-rays can tell us - specifically, the way their light is polarized, which refers to the plane the photon wobbles in as it travels. It’s a subtle effect, invisible to the eye, but packed with clues about what’s going on near these extreme objects: how plasma swirls in the twisted spacetimes and strong magnetic fields, how physics and geometry shapes the X-ray light as it escapes.

Thanks to a new space telescope called IXPE, we can now measure this polarization from space, something we’ve never really been able to do before.

I worked on ways to better make sense of these signals — to correctly read the fingerprints left behind by accreting fast-spinning neutron stars and black holes.

By doing this, even from thousands of light-years away, we can start to piece together how matter behaves when it’s stretched and spun by gravity and magnetism. We can test the extreme physics of the universe.
Viestintä